
The correlation functions arising in QFT have perturbative expansions which 
are infinite series indexed by graphs. The coefficient associated to a graph is a 
period in the sense of algebraic geometry, and physicists spend a great deal of 
time computing these periods. The development of the Connes-Kreimer hopf 
algebra of graphs has given considerable impetus to the qualitative study of 
these periods. When, e.g., are they multiple zeta numbers? In addition, the pe-
riod integrals frequently diverge, and considerable effort has gone into develop-
ing convergence methods to make sense of the coefficients. These lectures will 
focus on techniques from algebraic geometry which I hope can be used to give 
the physicists' work a rigorous mathematical foundation. Among the results I 
want to touch upon is the theory of determinantal varieties and its generalization 
to quaternionic pfaffian varieties. These furnish the basic motives for the physi-
cal periods. Then I will explain the Connes-Kreimer hopf algebra and relate its 
structure to algebraic geometry. The end result is to interpret Green functions as 
1-parameter subgroups on the spectrum of the Connes-Kreimer hopf algebra. 
Further topics include the recent example of Brown and Schnetz of a graph 
where the period is related to a Kummer surface associated to a product of a 
CM elliptic curve with itself, and a quantitative calculation for 1-loop graphs 
with arbitrary masses and momenta. Although this work is "informed" by alge-
braic geometry, I will not have to use any elaborate algebraic techniques beyond 
rational differential forms and their linear algebra. 
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