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Abstract

This text develops mathematical foundations for entropic optimal
transport and Sinkhorn’s algorithm in a self-contained yet general way.
It is a revised version of lecture notes from a course given in Paris
during the fall of 2021; some parts date back to an earlier course at
Columbia University in 2020.
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Introduction

Applications of optimal transport are thriving in areas such as machine learn-
ing, statistics, economics or image processing. Regularization plays a key role
in enabling efficient algorithms with provable convergence (see [29] for a re-
cent monograph with numerous references). Entropic regularization is the
most popular choice as it allows for Sinkhorn’s algorithm (also called itera-
tive proportional fitting procedure, IPFP) that can be implemented at large
scale and is analytically tractable. The entropically regularized transport
problem may be formulated as

inf / c(z,y) m(dz,dy) + eH (m|p @ v). (1)
mell(n,v) JXxY

Here IT(p, v) is the set of couplings of the given marginal probability measures
1, v on spaces X, Y. In the first term, ¢ : X x Y — R is the cost function; the
most important example is quadratic cost ¢(z,y) = ||z —y||?> on R x R%. In
the penalization term, H (- | ® v) denotes the relative entropy with respect
to the product measure p ® v and € > 0 is the regularization parameter.
The basic idea is to solve this “entropic” optimal transport problem for small
e > 0 to obtain an approximation of the (unregularized) optimal transport
problem that corresponds to € = 0.

The problem (1) is also of its own interest; i.e., without letting ¢ — 0.
On the one hand, applied researchers have started to exploit numerous bene-
fits resulting from regularization (such as smoothness, statistical properties,
etc.), so that the regularization is sometimes seen as an advantage rather
than an approximation error (e.g., [21, 30]). On the other hand, entropic
optimal transport can be seen as a special case of the (static) Schrodinger
bridge problem that has a long history in physics. Indeed, (1) can be trans-
lated into an equivalent static Schridinger bridge problem

inf H(rwlR 2
ont (7| R) (2)

by introducing the auxiliary reference measure R with
dR x e~“/*d(p @ v). (3)

We do not discuss Schrodinger’s original dynamic problem in this text but
refer the interested reader to the surveys [17, 26].

The convex minimization (2) falls into the class of entropy minimization
problems of the general form

inf HQIR)



with a convex set Q. Following [10], such problems admit a simple and ele-
gant general theory which we introduce in Section 1: existence and unique-
ness of a minimizer, characterization by a first-order condition, and other
properties. In Section 2 we apply this theory to the Schrédinger bridge
problem (2) where Q is the set of couplings and work out the corresponding
characterization—the optimal density is given by so-called Schédinger poten-
tials; roughly speaking, these are the Lagrange multipliers for the marginal
constraints. The potentials can be characterized as the solution of a sys-
tem of two equations, the so-called Schridinger system. We focus on the
case (3) of interest to us, where R is equivalent to u ® v and moreover of-
ten ¢ € L'(u®v). This allows us to achieve fairly general results while avoid-
ing some of the difficulties known in the theory of more general Schrédinger
bridges (see [3, 4, 18, 33, 34|, among others). The potentials can also be
seen as the solution to a dual problem in the sense of convex analysis; this
is detailed in Section 3. Section 4 translates the results from Schrodinger
bridges to entropic optimal transport via (3) and adds another basic obser-
vation: the potentials inherit regularity from the cost function c. Indeed,
the Schrodinger system can be seen as a conjugacy relation reminiscent of
the notion of c-convexity in optimal transport theory and allows for various
types of a priori estimates. Section 5 studies the convergence of entropic
optimal transport (1) to (standard) optimal transport as the regularization
parameter ¢ — 0. Specifically, we are interested in the convergence of the
optimal value (1), the optimal couplings and the Schrédinger potentials. We
conclude with Section 6 on Sinkhorn’s algorithm. Here we first derive the
convergence of the marginal distributions and a general bound for their con-
vergence rate, then continue with select results on the convergence of the
couplings and potentials. While the convergence properties are reasonably
well understood for bounded cost functions, the unbounded case is only par-
tially understood.

1 Entropy

Consider a measurable space (£, F) and denote by P(f2) its collection of
probability measures. In what follows, whenever a probability named R
is specified, E[] = E®[] = [-dR denotes the corresponding expectation,
whereas other measures are indicated explicitly.

Definition 1.1. Given @, R € P(2), the entropy of Q relative to R is

E@log 9¢], Q <R,

H(@QIR) = {OO O,



Relative entropy is also called Kullback—Leibler divergence. If Q < R,
we can write

H(Q|R) = E[h(dQ/dR)], h(z):=zlogz

as an integral under the reference measure R. Here and below, the convention
0 x (£00) := 0 is used. Noting that h : [0, 00] — [—e!, o0] is strictly convex
and using Jensen’s inequality,

Q — H(Q|R) is nonnegative and convex,

and strictly convex on the set where it is finite. Clearly H(Q|R) = 0 if and
only if Q@ = R.
1.1 Basic Properties

We define the total variation distance between P, Q € P(Q2) as

AP dQ

1P = Qlrv = [ |5 - 52| a7

for an arbitrary measure R > P, Q; that is, the L'-distance of their densities.
Two other representations are

IP=Qlrv = s [odP-Q) =2 sw (P(4)- Q).

|| <1 mbi. ACS mbl.

(An equally popular definition is to divide the right-hand side by 2, to nor-
malize ||P — Q|rv < 1.)

Lemma 1.2 (Pinsker’s Inequality). The total variation distance of Q, R €

P(2) satisfies
1Q — Rllrv < V2H(Q|R).

Proof. We may assume that H(Q|R) < oo. We have 3(z — 1)? < f(x)g(z)
for f(r) = 4 + 2z and g(x) = xlogx — x + 1, or equivalently v/3|z — 1| <
f(2)Y2g(x)'/?. Denoting Z = dQ/dR, this yields

31Q — Rli3v = EWV3|Z — 1|1* < E[f(2)9(2)"/*?
< E[f(2)|Elg(2)] = (4 + 2B[Z))E[Z 0g Z) = 6H(QIR),

where Hélder’s inequality was used to pass to the second line. ]



When (2 is Polish (i.e., a completely metrizable topological space), we al-
ways assume that F is the Borel o-field and endow P(2) with the associated
weak convergence topology (in the probabilistic sense): @, — @ weakly
means that E9[f] — EQ[f] for all f € Cy(Q), where Cy(2) denotes the
space of bounded continuous functions.

Lemma 1.3. Given Q, R € P(2), we have the variational representations

H@R)=  sup  (EC[9] ~log B¥(e?)) (1.1)
= sup (EQ [¢] — log ER[6¢]). (1.2)

¢: Q=R mbl., ER[e?]<c0

In particular, the function (Q, R) — H(Q|R) is jointly convex and jointly
lower semicontinuous wrt. convergence in variation. If § is Polish, this also
holds wrt. weak convergence.

Proof. Fix Q < R. Consider 0 < ¢ € L'(R) and define dR' = o 11 dR,
where o := E®[)] > 0 is the normalizing constant. Then % = jg, aly

and hence

H(Q|R) = H(Q|R') + E?[log 9] — log e > E?[log ] — log ET[4))].
This shows in particular that

H(QIR) > up (E®[log ¢] — log E[y)) (1.3)

where the supremum is taken over functions 3 > 0 that are bounded and
bounded away from zero. Consider 1y := dQ/dR € L'(R). Then v, =
(1/n) V 1o A n is such a function and dominated convergence yields

E®(log 1) — log Ef[¢,,] — E€[log 1] — log ER[¢o] = H(Q|R),

showing that equality holds in (1.3). Writing ¢ = log ), we have (1.1). Note
that the set over which the supremum is taken no longer depends on @
and R, and that (1.1) also holds when @ &« R. Moreover, the function
(Q,R) — (E9[¢] — log Ef[e?]) is convex and continuous wrt. convergence
in variation.! It follows that the supremum H(Q|R) is convex and lower
semicontinuous as claimed.

When  is a metric space, Cy(2) is dense in L'(u) for any Borel mea-
sure p. Hence the supremum in (1.1) can be further restricted to continu-
ous ¢, and then the weak lower semicontinuity follows in the same way.

L As the function ¢ is fixed, this also holds under a significantly weaker convergence:
we could weaken “convergence in variation” to “set-wise convergence” in Lemma 1.3.



Finally, we show (1.2). Here “<” is trivial. For the proof of “>" we may
assume that H(Q|R) < oo and hence @ < R, but in that case we may
use (1.3) with 0 < v :=e® € L1(R). O

We observe that (1.2) implies a way to infer integrability under @ from
exponential integrability under R: given a real function ¢ and § > 0 with
ef? € L'(R),

Eg] < — (log E7e™] + H(QIR)) (1.4)

1
B
by using ¢ := B¢ in (1.2).

For the remainder of the section, we fix the reference R € P(2). More-
over, 7 := max{x,0} and = := max{—=x,0} denote the positive and neg-
ative parts of x.

Lemma 1.4. Let Q,Q" € P(Q) and Q' < R.
(a) If H(Q|R) < oo, then (log Cﬁ%ﬁ € L(Q) and E%[log ‘i%] < H(Q|R).
(b) If either H(Q|R) < oo or H(Q|Q') < oo, then

H(Q|R) — H(Q|Q') = E%[log 22].

Proof. (a) Let H(Q|R) < oo, then in particular Q < R. Consider the
Lebesgue decomposition @' = Q) + @) into Q) < @ and Q51Q. Using
the inequality logz < z — 1 with # = 2//z for 2/ > 0 and z > 0 yields
log 2’ <logz+2'/z—1. Evaluating this at 2’ = Q1 and z = g then shows

Q-as., log %k = log & R < log 92 + Ql/ =log 9% + G dQl — L

It follows that (log %2 )+ € L'(Q) and
E9log 4% < H(QIR) + Qi(2) — 1 < H(QIR).
(b) Case 1: H(Q|Q') < co. Then log 4% € L}(Q), justifying (x) in
H(Q|R) = E%[log §%] = E[log(4% 9%)] = E?[log(43) + log(4% )]

“ EQog 4]+ E9log 9] = H(QIQ') + E9log 4%, (1.5)

Case 2: H(Q|Q') = co. Then H(Q|R) < oo and hence (log ‘f%)* €
LY(Q) by/(a), so that E®[log ‘fi—%] is Well—deﬁned.l We need to show that
E®[log %} = —00, or equivalently that E?[(log %)*] = 0.



Case (z)/ @ < @'. Suppose for contradiction that (log %)_ € LYQ).
Then log% € L'(Q) and (%) in (1.5) is again justified. Now (1.5) implies
H(Q|R) = oo, a contradiction.

Case (i1): Q@ € @Q'. Then Q{Cﬁl—% =0} > 0 and thus E%[(log %)_] =0
as desired. O

Lemma 1.5. Let Q,Q" € P(Q) satisfy Q < Q' < R. Then

dQ’ d
10 02 < VBHQIQ) + HQIQ)

log

L@
Proof. Let Z' = dQ'/dR and Z = dQ/dR. Then

E®llog Z' —log Z| = E9

zZ' z' zZ'
log —| = 2E%|log™ = | — E9|log >
o8 Z’ [ o8 Z] 87
Q[ 1opt 2. /
=2E% | log 7 + H(Q|Q').
In view of the elementary inequality log™ = < |z — 1],

Z/ !
EC [10g+ Z} < E9 ~ - 1' =ERZ -7 = |Q' - Q|rv.

Combining this with the above, we find that
E9log 2’ —log 7| < 2|Q' = Qllrv + H(Q|Q).

It remains to apply Pinsker’s inequality ||Q" — Q|lrv < /2H(Q|Q') from
t

Lemma 1.2.

The next inequality, sometimes called data processing inequality or con-
traction of relative entropy, expresses the idea that transforming data does
not increase the amount of information contained in it, or more precisely,
increase the ability to distinguish between two probability distributions.

Lemma 1.6 (Data Processing). Let P,Q € P(Q2) and K : Q@ — P() a
kernel.? Let P € P(Q) be the second marginal of P ® K € P(Q x ) and
similarly Q' for Q. Then

H(P'|Q) < H(P|Q).

2Throughout this text, kernel stands for Markov kernel.




Proof. We may assume that P < Q. For any kernels K1 < Ko : Q — P(0),
d(P ® Ky) _dP, dKj(w)

/ /
D (o) = 22 ® Ky-as. 1.6
O 2)(ww) dQ(w)d 2(w)(w) Q 2-a.s (1.6)
In particular, %Egggg (w,w') = —gg (w) and thus the definition of H implies

H(P|Q)=H(P® K|Q® K).
It remains to show that H(P ® K|Q ® K) > H(P'|Q’).

1. Proof via Jensen’s Inequality. Jensen’s inequality for h(z) = xlogx
and (1.6) and yield

H(P® 1|Q® Ky) = / / h <dp(w)dK1(“’) (d)) Ko, d')Q(dw)

40" d(w)
dP
> [1(G5) Q) = #rlQ) (17)

Denote by P’ @ K7 the “reverse” disintegration of P ® K from the second
marginal to the first, meaning that Kj : Q' — P(Q) is the conditional
distribution of the first marginal given the second (which we tacitly assume
to exist). Similarly, Q ® K = Q" ® Kj. Applying (1.7) to P’ ® K| and
Q' ® Ky,

HP®K|Q® K)=H(P' ® K{|Q' ® Ky) > H(P'|Q").

The only drawback of this (standard) argument is that existence of disinte-
grations is a nontrivial issue that requires some assumptions in the proba-
bility space. The following is less intuitive but more elementary.

2. Proof via Variational Representation. The definition of P’ means that
(W) P'(dw') = (W) P ® K(dw,dw")
o4 QxQ/

for any bounded measurable function ¢ : Q' — R, where on the right-hand
side we see 1) as a special case of a function ¢ : Q x Q' — R that depends
only on one variable, ¥ (w') = ¢(w,w’). We use this for both P’ v and @', e¥
in the variational representation (1.1):

HPKIQ®K) = sup (EP25[4] — log E9®K[e?))
¢: QX' —R bdd. mbl.
> sup  (ETF[Y] - log B9 [e"))

P: =R bdd. mbl.
- sup (E”'[¢] — log E¥'[e¥))
1: =R bdd. mbl.

= H(P'|Q"). 0



One special case of Lemma 1.6 occurs when the kernel is deterministic:
given a measurable map T : @ — ', we can consider the kernel K (w, dw’) =
5T(w)(dw’ ). Then P’ is sometimes called the push-forward of P under T and
denoted T P (or Ty P), especially in analysis. (In probabilistic terms, T4 P is
the law of the random variable T' under P). In this case, the data processing
inequality reads

H(TyP|TxQ) < H(P|Q). (1.8)

Example 1.7. If P,(Q are probabilities on a product space X x Y and P’, Q’
are their marginal distributions on X, then H(P'|Q’) < H(P|Q). To see this,
we use the deterministic kernel (z,y) — d, in Lemma 1.6, where Q@ = X x Y
and ' = X. Or equivalently, we take T in (1.8) to be the projection
(z,y) — x.

1.2 Minimizing Entropy

The following compactness property of sets with bounded entropy is due to
the superlinear growth of h(z) = xlog .

Lemma 1.8. Let (Qn)n>1 satisfy sup,, H(Qn|R) < oco. Then there are con-
vex combinations Q, € conv{Qn, Qn+1, ...} that converge in variation.

Proof. Let Z,, := dQ,/dR. As E[h(Z,)] is bounded and h has superlinear
growth, the la Vallée-Poussin theorem |2, Theorem 4.5.9, p. 272| shows that
(Zn)n>1 is uniformly integrable. By the Dunford-Pettis theorem [2, Theo-
rem 4.7.18, p. 285| this is equivalent to weak precompactness in L!(R) and
(Zy)n>1 has a subsequence that converges weakly in L!(R)—i.e., relative to
the topology o(L'(R), L®(R)).> Mazur’s lemma [31, Theorem 3.13, p.67]

then yields convex combinations Z/, € conv{Z,, Zn+1,...} that converge
(strongly) in L'(R), meaning that the corresponding convex combinations
Q. € conv{Qn, Qn+1, ...} converge in variation. O

The compactness property in Lemma 1.8 shows that for (Q,) such that
lim,, H(Qn|R) exists, suitable convex combinations @), converge in total vari-
ation, but it is silent about the original sequence. We may note that if
Qn — Q in variation and lim H(Q,|R) = H(Q|R) =: a, then necessarily
lim H(Q!,|R) = a whenever Q/, € conv{Qn, @Qn+1,-..}. Next, we show by a
geometric argument that this equality of limits is sufficient for convergence
of the original sequence.

3In fact, this is another noteworthy compactness property of (Qn)n>1: there is a sub-
sequence that converges set-wise.



Lemma 1.9. Let Q,, € P(Q). Suppose that lim,, H(Q,|R) =: a € R ezists
and that limsup,, , oo H(QmalR) > a for Qmn = (Qm + Qn)/2.* Then
(Qn) converges in variation.

Proof. We first note the “parallelogram identity” which follows directly from
Definition 1.1:

H(Qm‘R) + H(Qn|R) = 2H(Qm,n|R) + H(Qm|Qm,n) + H(Qn|Qm,n)

By the assumption, taking limsup,, ,,_,o, on both sides shows that the last
two terms converge to zero. Using

HQm - QnHTV S ”Qm - Qm,nHTV + ”Qn - Qm,nHTV

as well as Pinsker’s inequality (Lemma 1.2), we deduce the Cauchy property
hmm,n ||Qm - QnHTV =0. t

We can now establish existence and uniqueness of a minimizer for H( - |R)
within a suitable set Q, sometimes called the entropic projection of R onto Q.5

Theorem 1.10. Let O # Q C P(2) be convex and closed in variation, and
suppose that Qi == {Q € Q: H(Q|R) < oo} # 0.

(a) There ezists a unique Q. € Q such that

H(Q|R) = jnf H(QIR) € [0.00).

Moreover, Qs > Q for any Q € Q. In particular, if there exists
Q € Qfin with Q ~ R, then Q. ~ R.

(b) Qo € Q is the minimizer Q. if and only if Zo := dQo/dR exists and®

E@log Zo] > H(Qo|R) for all Q€ Qpin. (1.9)

Proof. Let @, € Q be such that H(Q,|R) — a = infgeg H(Q|R). By
convexity we have Qppn = (Qm + @n)/2 € Q and hence H(Qmn|R) > a
for all m,n. Lemma 1.9 now shows that (Q),) has a limit @, in variation,
and Q) is a minimizer by the lower semicontinuity of H( - |R); cf. Lemma 1.3.
Uniqueness holds due to the strict convexity of H(-|R).

4As lim infrm nsoo H(Qm.n|R) < a by convexity, this condition is actually equivalent
t0 limm,n—soo H(Qm,n|R) = a.

5Or I-projection, following [10] which used I instead of H to denote relative entropy.

“We have E?[(log Zo)"] < oo for all Q € Qyin by Lemma 1.4 (a), so that the integral
E®[log Zo] € [—00,0) is well-defined as soon as Zy exists.

10



Let Qo € Q satisfy Qo < R, and Q1 € Qfin. For A € [0, 1], consider
Qx = AQ1+ (1 = N)Qo and Z) = dQy/dR. As X\ — h(Z)) is convex, its
difference quotient decreases monotonically to Ox|x=o+H (QA|R) as A | 0,

WZy) — h(Zo) > W

W (Z1 — Zo)W (Zo) = (Z1 — Zo)(1 + log Zy).
If Qo € Qfin, the left-hand side is integrable and monotone convergence
yields

MIa=o+ H(QA|R) = Ox|x=0+ E[M(Z))] = E[(Z1 — Zo)h' (Z0)]
= E[(Z1 — Zo)(1 + log Zp)]
= ER[Zylog Zo] — H(Qo|R) € [—00,00). (1.10)

This identity remains valid for Qg € Q\ Q sy if the derivative on the left-hand
side is interpreted as —oc.

Suppose that Qq is the minimizer Q.. Then Ox|y=0+H (QA|R) > 0 and
we conclude that

Zilog Zy € LY(R) and ET[Z)1og Zy] > H(Qo|R), (1.11)

which is (1.9). Note also that Q; &« Qo would imply R{Zy = 0,7Z; > 0} =
R{Zylog Zy = —oo} > 0, contradicting (1.11).

Conversely, if Qo € Q satisfies (1.9) and Q € Qy;y is arbitrary, then
Lemma 1.4 (b) shows the equality in

H(Q|R) > H(Q|R) — H(Q|Qo) = E®[log 4] > H(Qo|R).  (1.12)
In particular, H(Qo|R) is minimal. O

The last assertion in Theorem 1.10 (a) confirms the intuition that Q,
being the “most diffuse” (relative to R) measure in Q, should have the largest
support among all Q € O with Q < R. Analytically, the reason is that
R'(0) =1+ 1log0 = —oo; i.e., increasing the value of a vanishing density by
a small amount leads to a large reduction in entropy.

As seen in the proof, Theorem 1.10 (b) is a variational first-order condi-
tion, stating that the directional derivative of the cost functional at the min-
imizer should be nonnegative in all admissible directions. In regular cases,
we may expect that the minimizer is an interior solution and the derivative is
zero in all admissible directions. (Indeed, it holds for the case of Schrédinger
bridges; cf. the discussion following Proposition 2.17.) That corresponds
to (1.9) holding with equality, or equivalently to Q +— E%[log %] being
constant on Qf;,. The latter will be used as a condition in several state-
ments below.

11



Remark 1.11. The “if” part of Theorem 1.10 (b) holds as soon as Q f;,, # 0,
even for not necessarily convex or closed @—those conditions were not used
in the proof. The “only if” part used convexity, though not closedness.

The following Pythagorean-type relationship reflects the strict convexity
of the entropy minimization problem: if H(Q|R) is close to infg H(-|R),
then @ is close to the minimizer Q..

Corollary 1.12. Let Q C P(Q) be convez. If Q. minimizes H(-|R) over Q,
then

H(Q|Q«) < H(Q|R) — H(Q«|R) for all Q€ Qgin.
If Q — E%[log dd%*] is constant on Q gy, the above holds with equality.

Proof. Both assertions follow from (1.12) with Qo9 = Q. and Remark 1.11.
The second assertion is also immediate from Lemma 1.4 (b) alone. O

The optimal log-density has the following integrability property.
Corollary 1.13. Let Q C P(Q) be convex. If Q. minimizes H(-|R) over Q,

then

dQ
dR
Proof. Let Z, = dQ«/dR and Q € Qy;,. As already stated in the footnote

of Theorem 1.10, Lemma 1.4 (a) ensures that E?[(log Z.)T] < co. On the
other hand, (1.9) with Qy = Q. clearly implies E?[log Z,] > —oc. O

log e LYQ) forall Qe Qtin-

The next corollary is stated merely for emphasis; it is obtained by spe-
cializing the inequality in (1.9) to an equality and recalling Remark 1.11.

Corollary 1.14. Let Qo € Q C P(Q) and Qyin, # 0. If
Q— E° [log %] is constant on Qi U{Qo},
then Qo € Qpin and Qo € argming H(-|R).

As mentioned above, the constancy in Corollary 1.14 corresponds to
the directional derivative of the entropy at (g being zero, for all directions
within Qy;,. The following sufficient condition for optimality is more gen-
eral, and easier to verify in practice, as it only asks for an approximating
sequence with a constancy as in Corollary 1.14.

Proposition 1.15. Let Qp € Q C P(Q) satisfy Qo < R and consider the
log-density ¢ := log %. Suppose there exist ¢, € L*(Qo) such that

12



(i) ER[¢y) = B[] for all Q € Qpin,
(ii) limsup,, E?°[¢,] > E[(],

(iii) lim sup,, Ef[etr] < 1.

Then H(Qo|R) = infgeo H(Q|R) € [0,00]. In particular, if Qi # 0, then
Qo 1s a minimizer.

Proof. The claim is trivial if Qf;, = (. Fix an arbitrary Q € Qpip, set
Z :=dQ/dR and Zy := dQy/dR = exp((). The convex function h(x) :=
h(z) — x = xlogx — = has Fenchel conjugate i*(y) = sup,|zy — h(x)] = €Y,
which yields Fenchel’s inequality

WZ) > CuZ — B (Cn)- (1.13)
As ER[(,Z]) = EQ[¢,] = E(,] by (i), taking expectations in (1.13) yields
H(Q|R) — 1= EM(Z)] > B[ 2] — BN (G)] = B¢ — BT [e]
and then (ii) and (iii) allow us to conclude that

H(QIR)~1 > limsup E[C,] ~limsup ER[e¢"] > EP[C]~1 = H(Qo|R)~1.
OJ

Remark 1.16. (a) Often the (, in Proposition 1.15 are chosen as log-
densities of some probabilities @Q,,, and then (iii) is trivial as Ef[eS] = 1.
In fact, the (, can always be normalized in this fashion: an equivalent way
to state the proposition would be to assume E*[e¢"] = 1 and omit (iii).

(b) Proposition 1.17 below will imply that the sufficient condition of
Proposition 1.15 is also necessary in many cases. In Proposition 1.17, Q¢ =
Q4 is the minimizer and we construct @, with log-density (, = log dgg
satisfying ¢, — ¢ in L'(Qp), which of course implies (ii) and (iii). In many
cases, we can construct the approximation such that (, also satisfy (i).

The next result serves two purposes. First, we want to describe the
minimizer @), over Q through an approximation with measures @, that
can be constructed more explicitly. Indeed, most convex sets Q of interest
can be characterized through countably many linear constraints, and then
a natural polyhedral approximation Q,, can be found by enforcing only the
first n constraints. In this context, one may be able to determine @, :=
argming H(-|R) by elementary means, and then the next result yields that
@Qn — Q. and also that the log-densities converge. We will apply this idea to
study the structure of Schrodinger bridges in Section 2.3.1. A second purpose
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is to relate the condition Qf;, # 0 to the convergence of the approximation.
This will not be used until Section 5.2; for now the reader can focus on a
situation where Qy;,, # 0 is given.

Proposition 1.17. Consider a decreasing sequence of sets Q, C P()
that are convex and closed in variation, and let @ := N, 9,,. Suppose that
Q. fin # 0 and let Q, = argming  H(-|R) be the minimizer over Q,." The
following are equivalent:

(1) Qfin # 0,
(ii) Qn converge in variation and H (lim, Q,|R) < oo,
(111) lim, H(Qn|R) < oo.
If these conditions are satisfied, then
Qn — Qs in variation and H(Qn|R) — H(Q4|R), (1.14)
where Q« = argming H (- |R). Moreover, Qn > Qni1 > Q+ as well as
dQn dQ+«
®"dR dR

Proof. The inclusion Q,, D Q.41 D Q implies that a, := H(Qy|R) is in-
creasing and a, < a, := infgecg H(Q|R), so that a := lima, < a, and in
particular (i)=-(iii). For m > n we have Qnn == (Qm + Qn)/2 € Q,, and
thus H(Qmn|R) > an, hence limsup,, , oo H(QmalR) > a. If a < oo,
then Lemma 1.9 yields that @, converge in variation to some limit Q). As

Qen,Q, =9 and

H(Q«Qn) — 0 and lo — log in LYQ.). (1.15)

H(Q|R) <lima, =a < a.

due to Lemma 1.3, we see that Q) € Qp;, and @ € argming H(-|R), so
that @ = Q. by the uniqueness in Theorem 1.10 (note that Q is closed and
convex, as an intersection of such sets). In particular, we have shown both
(iii)=-(i) and (iii)=(ii). On the other hand, @ € N, Q,, implies H(Q|R) > a,
for all n and hence H(Q|R) = lim a,,. This shows (ii)=-(iii) as well as (1.14).
Finally, Theorem 1.10 and Q,, D Qn+1 D Q also yield the stated absolute
continuity.

It remains to prove (1.15). We use Corollary 1.12 for the problem over Q,,
(where @, is the minimizer and Qs € Qy fin is a suboptimal measure) to
find

A unique minimizer exists by Theorem 1.10. One can note that Q,, rin # 0 is implied

by Qfin # 0.
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As H(Qn|R) — H(Q«|R) was already shown, we deduce H(Q.|Q,) — 0.
The second part of (1.15) then follows by Lemma 1.5. O

In the application of Proposition 1.17 to Schrodinger bridges in Sec-
tion 2.3.1, each of the sets Q,, is of the form considered in the next example,
given by n linear equality constraints.

Example 1.18. Given bounded measurable functions ¢1,...,¢, : 2 — R,
let
Q={QeP(®): E®p] =0, 1<i<n}

Assume that Q;, # (. As Q is convex and closed, Theorem 1.10 then yields
a unique minimizer @, € Q. We claim that @, is uniquely characterized
(within Q) by having a density of the form

dQs

TR = aexp(bipr + -+ + bndp) for some b; € R and a > 0. (1.16)
Sufficiency of (1.16) is immediate from Corollary 1.14; we need to show
that there exists Qo € Q of the form (1.16). To this end, we construct the
minimizer using Lagrange multipliers. We confine ourselves to a sketch and
refer to [19, Section 3, esp. Corollary 3.25| for a detailed treatment. Indeed,
Q¢tin # 0 implies that for all b = (by,...,b,) € R™,

R{b-®>0} >0 = R{b-® <0} >0, (1.17)

where ® = (¢1,...,¢,) and - is the Euclidean inner product. This can be
used to show that the finite-dimensional concave optimization problem

R
max B[~ exp(b - 2)]

has a solution b. (This is known as the exponential utility maximization
problem in financial economics, where (1.17) is interpreted as absence of
arbitrage opportunities.) Moreover, the maximizer b satisfies the first-order
condition Ef[—¢;exp(b-®)] =0 fori=1,...,n. We can now define Qg via
% = aexp(b- ®), where a > 0 is the normalizing constant. Then @ is of
the form (1.16) and the first-order condition states that @ € Q as desired.
While Corollary 1.14 directly implies that Qg € Q has minimal entropy,
we mention that this also follows through convex duality along the lines of
Lemma 1.3. See [19, Section 3| for a detailed discussion which also shows
that (1.17) implies Qy;, # 0 as |®| is bounded, or more generally whenever
EE[e"®l] < oo for all 7 > 0. A different, more abstract proof of (1.16) is
given in [10, Theorem 3.1].
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2 Static Schrodinger Bridges

Let (X, Fx, ) and (Y, Fy,v) be separable® probability spaces, X x Y their
product (endowed with the product o-field Fx ® Fy) and R € P(X x Y) a
given reference probability measure. We denote by II(u,v) C P(X x Y) the
set of couplings; that is, the set of all @ € P(X x Y) satisfying

(2) Q(dz, dy) = /X £ () ulde), /X o) Qlde.dy) = /Y 9(y) v(dy)
(2.1)

XxY

for all bounded measurable f : X — R and g : Y — R. We observe that
II(p,v) is convex and closed in variation, putting us in the framework of
Theorem 1.10 with Q := II(u,v). Its requirement that ITz;, (1, v) := Qpin
is nonempty—i.e., that there exists m € II(u, v) with H(7|R) < co—will of
course depend on the choice of R. A simple sufficient condition is

d(p®v)

T € L'pov), (2.2)

R>»p®v and log

as this is equivalent to p ® v € Iy, (p,v). We write (¢ ® ¥)(z,y) =
o(z) + ¢¥(y) for functions ¢ : X — [—o0,00) and ¢ : Y — [—o0, 00).
Theorem 2.1. Let I, (1, v) # 0. Then there is a unique coupling

T = argmin H( - |R),
(p,v)

called the (static) Schrodinger bridge from u to v.

(a) Let R ~ p® v. Then there are measurable functions ¢ : X — R and
P :Y = R, called Schrédinger potentials, such that

dmy
% = 9% R-a.s.

The potentials are a.s. unique up to an additive constant.”

8 A probability space (X, Fx, i) is called separable if there is a countable family (A,) C
Fx such that for every A € Fx and € > 0, there exists n with u(AAA,) < e. This property
holds if and only if L' (X, Fx, 1) is separable (consider simple functions based on (A,) or
see [2, Exercise 4.7.64, p. 307]). All probability spaces of interest to us are separable; some
very general sufficient conditions are detailed in [2, Section 7.14(iv), p. 132].

9Le., if ¢, 1)’ are potentials, then ¢’ = p+a p-a.s. and 1)’ = ¢ —a v-a.s. for some a € R.
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(b) Conversely, let my € I(u,v) admit a density of the form

dmo

IR = Y Roag.s.

for some measurable functions ¢ : X — [—00,00), ¥ : Y — [—00,00).
Then mo is the Schrodinger bridge.'?

If (2.2) holds, then ¢ € L'(u) and v € L'(v).

Remark 2.2. In Theorem 2.1 (b), it is important that log % = @1 holds
R-a.s. rather than merely mg-a.s. Indeed, let X = Y be a finite set with
uniform measure 4 = v and R = p ® v. Clearly the Schrodinger bridge is
given by 7, = R. If mp is the identical coupling (i.e., the uniform distribution
on the diagonal {(x,z) : x € X}), then dmy/dR = exp(¢ @ 1) holds mp-a.s.
for ¢ = 0 and ¢ = log(1/|X|), but mp # .

Occasionally we want to apply Theorem 2.1 (b) in a setting where it is
not known a priori that I, (1, v) # 0. The following variant includes a
sufficient condition for that.

Corollary 2.3. Let mg € II(u,v) admit a density of the form %g = ¥
R-a.s. for some measurable functions ¢ : X — [—00,00), ¥ : Y — [—00,00)
satisfying (¢ ® )T € LY (p @ v). Then g € Wpip(p,v) and mo is the
Schrédinger bridge. Moreover, (p,1) € L'(u) x L'(v) and H(mo|R) =

) +v(v).

Proof. Lemma 2.23 will show that (p,%) € L'(u) x L'(v) and H(mo|R) =
p(e)+v(v). Thus mp € Il g (1, v) # 0 and now Theorem 2.1 (b) applies. [

Before proving Theorem 2.1, we detail three more corollaries. First, we
emphasize a direct consequence of the fact that ‘fi’g > 0 in Theorem 2.1 (a);

compare also Theorem 1.10.

Corollary 2.4. If U (p,v) # 0 and R ~ p ® v, the Schrodinger bridge
satisfies e ~ p ® v. In particular, if there exists any coupling with finite
entropy, there also exists a coupling with finite entropy that is equivalent
to uQ@u.

OWhile 7o € T4 (1, v) is not assumed a priori, it is part of the conclusion. Similarly,
p, 1 are a priori allowed to take the value —oo, but Lemma 2.14 below shows that ¢,y
are necessarily finite a.s.
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2.1 Schrodinger Equations

Next, we characterize the Schréodinger potentials as the solution to a system
of two equations, the Schrodinger system. These equations will be used in
Section 6 to define the iterates in Sinkhorn’s algorithm.

Let R < p ® v, then % exists and we may define a measurable
function ¢ : X x Y — (—o00, 00| via

dR
dp@v)

e—clzy) _

(There is no particular necessity to write the density in exponential form;
our notation is merely chosen to resemble the setting of entropic optimal
transport in Section 4 below.) In most cases of interest to us, we have
R ~ u®v and then ¢ is R-valued. For measurable functions ¢ : X — [—00, 00)
and ¥ : Y — [—00,00), we study the so-called Schrédinger equations

o(x) = —log/ ¥ W) —c(z.y) v(dy) p-as., (SE1)
Y

Y(y) = —log/ e?(@)—e(@y) u(dr) v-a.s. (SE2)
X

Consider the measure 7(ip, 1)) defined by
dr(p,v) == e?®Y dR = eV d(p @ v).

Recalling that the marginal density is obtained by integrating the joint den-
sity over the other marginal, we see that

(SE1) <= the first marginal of m(p, ) is py, (2.3)
(SE2) <= the second marginal of 7w(p,)) is v. (2.4)

If m(p, ) € (u, v), it follows that (¢, 1)) is a solution of (SE1)—(SE2). That
is assertion (a) below, whereas (b) is a consequence of Theorem 2.1 (b).

Corollary 2.5 (Schrodinger Equations). Let e ¢ = dR/d(p ®@ v).

(a) If (p,%) are Schrodinger potentials, then (p,1)) solve the Schrodinger
equations (SE1)—(SE2).

(b) Let p : X = [—00,00) and ¢ : Y — [—00,00) be measurable functions.
If (p, 1) solve (SE1), then

dr(p, 1) == e?PY dR
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defines a probability measure 7(p,1) whose first marginal is p. De-
note by V' its second marginal. If Wi (1, ') # 0, then w(p, ) is the
Schrédinger bridge from p to V. The analogue holds for (SE2).

In particular, if (p,v) solve (SE1)~(SE2) and It (p,v) # 0, then
w(p, 1) is the Schrodinger bridge from p to v. If R ~ p® v, it fol-
lows that the solution of (SE1)—(SE2) is a.s. unique up to an additive
constant.

In Remark 3.4, we will further portray the Schrodinger system as the
Euler-Lagrange equations (i.e., variational first-order conditions) describing
the optimality of the potentials in a maximization problem.

2.2 Cyclical Invariance

Theorem 2.1 shows the relation between optimality of a coupling and the
decomposition of its density as a product e?®e?®) . 1In this section we
introduce a reformulation for the existence of a decomposition that will be
useful in the context of passing to limits (see Sections 5 and 6).

Definition 2.6. A probability measure 7 € P(X x Y) is called cyclically

invariant (with respect to R) if 7 ~ R and its density g—g admits a version

Z : X xY — (0,00) such that for all k > 2,

k k

HZ(%‘,.%’) = HZ(:UZ'ayiJrl) for all (z;,3:)iy € (X x Y)F, (2.5)
=1 =1

with the cyclical convention yi4+1 := yi1.

Similarly to the decomposition into potentials, one can see (2.5) as a
first-order condition of optimality. Indeed, for a discrete problem where
X={x;;,1 <i<k}and VY = {y;,1 <i <k}, one can find by elementary
perturbation arguments that the optimal density has to verify (2.5).

Lemma 2.7. Let m € P(XxY) satisfy m ~ R. Then 7 is cyclically invariant
if and only if

iR e R-a.s. (2.6)
for some measurable functions ¢ : X = R, ¢ : Y — R.

Proof. Let (2.6) hold and Z := e#®¥. Then (2.5) boils down to

k k
exp (Z p(i) + M%)) = exp <Z p(zi) + w(ym))

i=1 =1
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which holds by simply rearranging the sum.

Conversely, let Z : XxY — (0, 00) satisfy (2.5) and fix an arbitrary point
(4, yx) € Xx Y. Define the measurable functions ¢ : X - R, ¢ : Y — R via
e?W) = Z(z,,y) and e#®) = Z(z,y.)e ¥¥) then e#(*+) = 0 and

egp(z)—i—ip(y) _ Z(m,y*)Z(x*,y) _ Z(x*,y)Z(%y*)
e (ys) Z(x*jyﬁ

= Z(ac,y)

where the last equality holds due to (2.5) with & = 2 and (z1,y1) = (z,y)
and (z2,y2) = (Tx, Y ). O

Remark 2.8. More generally, the Borwein—Lewis theorem |3, Theorem 3.3|
states that a function Z : S — (0,00) on an arbitrary subset S C X x Y
can be decomposed as Z = e?®¥ if and only if it satisfies a relation similar
0 (2.5). The proof is particularly simple when S = X X Y as in Lemma 2.7.

In view of Lemma 2.7, the following is a special case of Theorem 2.1.

Corollary 2.9. Let Uy (pt,v) # 0 and R ~ p®@v. Then m € II(p,v) is the
Schrodinger bridge if and only if it is cyclically invariant.

2.3 Proof of Theorem 2.1

In Theorem 2.1, existence and uniqueness of m, follow immediately from
Theorem 1.10. We start with the proof of part (a) in the next section, then
continue with the verification part (b) and end with the integrability of the
potentials.

2.3.1 Existence and Uniqueness of the Decomposition

Suppose that X,Y are separable. Then instead of using all bounded mea-
surable functions f,g to define II(u,v) in (2.1), it suffices to test against
suitable countable dense families. Indeed, we can find (f;)i>1 € L*°(u) and
(gi)i>1 C L®(v) such that @ € II(u,v) if and only if

f@) QU dy) =0, [ aly) Qrdy) =0, iz1 (1)
XxY XxY

This enables a natural approximation of II(u,v) defined by finitely many
linear constraints: let Q,, be the set of all @ € P(X x Y) satisfying (2.7) for
1 < i< n (instead of all ¢ > 1). Then Q,, is convex, closed in variation and
M Qn = (1, v) = Q as in Proposition 1.17, which shows that

argmin H( - |R) =: m, — 7, in variation,

n
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or equivalently, drm,, /dR — dr./dR in L*(R). On the other hand, we obtain
from Example 1.18 that

dm,

AR = exp(pn © ¥n)

for some bounded measurable functions ¢, : X — R and ¢, : Y — R; namely,
pn and 1, are linear combinations of f;,7 < n and g;,7 < n, respectively
(and a constant function). After passing to a subsequence if necessary, we

conclude that
dms

dR

We would like to pass from the existence of the R-a.s. limit (2.8) to the
separate existence of limits ¢ = lim ¢, and ¥ = lim1), in [—oo0,00). That
is of course not possible at this stage, as there is a degree of freedom in
choosing (¢n, ¥y,): clearly (¢, — an, ¥y + a,) is another possible choice, for
arbitrary a, € R. Below, we show that under our assumption R ~ u ® v,
this is indeed the only degree of freedom and the separate limits exist after
a normalization of the form ¢, (z.) = 0 for all n. To that end, we first study
more closely the structure of the set S where the limit (2.8) exists.

To see where we are headed, note that constructing the separate limits
would be straightforward if lim ¢,, @ v, existed (in R, say) on a product set
A x B of full measure: Choose a normalization ¢, (z.) = 0 at an arbitrary
xx € A. Given (z,y) € A x B, we also have (z,,y) € A x B by the product
structure, and writing

= 1i_{n exp(pn @ Yn) R-as. (2.8)

on(T) = on(T) — Pn(Tx) = (P © Yn)(T,Y) — (Pn © V) (T4, y)

shows that lim ¢, (x) exists. In general, a set of full product measure may
fail to contain any measurable rectangles A x B of positive measure. The
next lemma provides a slightly weaker property that serves as a proxy for
our purposes. (The reader who is less technically inclined may take Corol-
lary 2.12 below for granted and skip directly to Section 2.3.3 without loss of
continuity.)

2.3.2 On Sets of Full Product Measure

Lemma 2.10. Let (X, Fx,p) and (Y, Fy, 1) be probability spaces. If a set
S € Fx ® Fy has product measure (u @ v)(S) = 1, then (u ® v)-almost all
(T4, yx) € S have the following property: there are Xg C X and Yo C Y with
p(Xo) = v(Yo) =1 such that Sy := S N (Xo X Yo) satisfies (x4, ys) € So and

(z,y) € So = (2x,y) € S0, (7,yx) € So.
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Proof. Let S, = {y : (z,y) € S} denote the section at x € X, and anal-
ogously for y € Y. Set X3 = {z € X : v(S;) = 1}. In view of Fu-
bini’s theorem, (p ® v)(S) = 1 implies p(X;) = 1. Let z, € X; and set
Yo={yeY:pulSy)) =1}NS,,. Then v(Yy) =1 following the same argu-
ment. Pick any y. € Yo and note that Xg := X; N S, satisfies u(Xp) = 1.
Consider an arbitrary point (z,y) € Xo x Yo, then (z.,y) € Sy and
(z,y«) € Sp by the construction of (x,y.). In particular, this applies to any
(a:,y) € 5. 0

We observe the following consequences for decompositions of functions.

Lemma 2.11. Let X,Y be sets and Sg C X X Y. Suppose there exists a point
(x4, y%) € So such that (zy,y) € Sy and (x,y.) € Sy for all (x,y) € Sp.
Write Xo := projx So and Yo := projy So, and consider functions ¢, ¢, op :
Xo = [—00,00) and ¥, 1y, : Yo — [—00,00) that are finite at x, and ysx,
respectively.

(i) If p® Y =@’ @Y on Sy, then ¢ = @' +a on Xg and p =" —a on Yy,
where a := @(x.) — @' (z4).

(ii) Let F := lim (¢, @ ,) € [—00,00) exist on Sy with F(z.,y«) € R,
where y, are normalized to oy (xs) = 0. Then the pointwise limits p :=
lim ¢, and ¢ := lim, exist in [—00,00) on Xo and Yq, respectively.
Indeed, they are given by p(x) = F(x,y«) — F(2x,yx) and Y(y) =
F(zy,y).

Proof. (i) Without loss of generality, p(z.) = ¢'(x4). Set F := p®1. Given
(x,y) € Sp, we know that (z.,y) € Sy and hence

PY(y) = F(2:,9) — () = F(2s,y) — ' (22) = ¢'(y),

and then also () = F(z, ) — $(ys) = F(z,32) — /() = 9'(2).
(ii) Define ¢(z) := F(z,yx) — F(2x,y%) and ¢¥(y) := F(x4,y). Writing
F, = ¢n & ¢y, we have F,, — F on Sy. Therefore,

() = Fn (2, 4x) = Fu(e, ys) = F(2,42) = F(24,54) = ()

and

VoY) = Fa(s,y) — on(s) = Fo(rs,y) = Flzs,y) = 9(y). O

For ease of reference, we record the combined result of the two lemmas.
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Corollary 2.12. Let (X, Fx,u) and (Y, Fy,un) be probability spaces. Con-
sider measurable functions ¢, ¢, @n + X — [—00,00) and P,y Y —
[_00700)'

(i) If (p@v){p @Y > -0} >0 and o DY = ¢ DY (u@v)-a.s., then
o =¢ +ap-a.s. and p =" —a v-a.s. for some a € R.

(i1) Let F :=lim (¢ ® 1) € [—00,00) exist (u @ v)-a.s. and suppose that
(L@V){F > —oc0} > 0. Then F = & for some measurable functions
v : X = [-00,00) and 1) : Y — [—00,00). Moreover, there are a, € R
such that ¢ = lim(py, — ay) p-a.s. and ¢ = lim (Y, + a,) v-a.s.

Proof. (i) We apply Lemma 2.10 to S := {¢ @ ¢ = ¢ @ ¢'}, then the
assumption (p@v){p@Y > —oco} > 0 allows us to chose (x4, yx) € {pHY >
—oo} and the claim follows from Lemma 2.11 (i).

(ii) Consider the measurable set S := {lim (¢, & 1,,) exists in [—o0,00)}.
We apply Lemma 2.10 to S, then (u ® v){F > —oo} > 0 allows us to chose
(T4, y%) € {F > —oo}. In the assertion of Lemma 2.10 we may assume
that Xg = projx So and Yy = projy Sp and that these sets are measurable
(otherwise remove an appropriate nullset). We normalize ¢p(z+) = 0 for
all n (by subtracting a constant from ¢,, and adding the same to 1),), then
Lemma 2.11 (ii) shows that ¢ = lim ¢,, and ¥ = lim ¥, exist a.s. in [—00, 00).
They are measurable as limits of measurable functions. O

Remark 2.13. In this framework (and in contrast to Remark 2.15 below),
the separate measurability of ¢, is generally not an issue. Specifically,
let p : X = [-00,00) and ¥ : ¥ — [—o0,00). If FF = o @Y (u® v)-
a.s. where F' is measurable and (u ® v){F > —oo} > 0, then ¢, are a.s.
measurable. Indeed, our proof shows that ¥(-) = F(zx,-) — ¢(z4) p-a.s. and
o(1) = F(-,y«) — ¥(ys) v-a.s. for certain (x4, ys), and the right-hand sides
are clearly measurable.

2.3.3 Completing the Proof of Existence and Uniqueness

After this excursion, let us return to (2.8) and complete the proof of the
existence and uniqueness of the decomposition % = %Y R-as.

The measurable set S = {F := lim(p,, @ 1)) exists in [—00,00)} satis-
fies R(S) =1 by (2.8) and hence (u ® v)(S) = 1. The set S’ = {F > —o0}
satisfies 7.(S") = 1 and hence R(S’) > 0 and then (u ® v)(S’) > 0. Corol-
lary 2.12 thus yields the existence and uniqueness of ¢, ).

It remains to show that ¢, 1 are a.s. finite. The following completes the
proof of Theorem 2.1 (a).

23



Lemma 2.14. Let mg € I(u,v) admit a density of the form

dmo

IR = eV Roa.s.

for some measurable functions ¢ : X — [—00,00), ¥ : Y — [—00,00). Then
p, Y are a.s. finite and my ~ R.

Proof. Let A := {¢ = —oc}, then 9% =0 on A x Y and mg € II(u, v) yields

dR —
u(A):m)(AXY):/ @dRZO.
Axy AR
The proof that ¢ > —oco v-a.s. is analogous. O

Remark 2.15. The assumption R ~ p® v is important in Theorem 2.1 (a).
If merely R < p ® v, a similar result can be shown, but the identity (Z%* =
e?®¥ only holds m,-a.s., and 7, ~ R may fail. Moreover, the uniqueness of
potentials is replaced by a countable number of normalizations (each on a
different subset) instead of just one. The subsequent Example 2.16 illustrates
these points in a simple case. For general R <« pu® v, one can still decompose
the density of 7., but now even the measurability of ¢, can fail. Roughly
speaking, an uncountable number of normalizations may need to be chosen.
We refer to [3, 18, 34| for these more general situations, whereas our proof
is closer to arguments going back to [15, 17].

Our assumption that X,Y are separable was made to obtain a construc-
tive approximation as detailed below (2.7)—this is the one and only instance
where separability will be used. Assuming separability does not seem to ex-
clude any examples of interest. A less constructive approach based on Hahn—
Banach separation, appropriate for general measurable spaces, is taken in [10,
Theorem 3.1|, which shows that the density of 7, always satisfies

dr,
log % = lim(pp ® o) in L'(m.) (2.9)

for some ¢, € L'(u) and 1, € L'(v).!! (One can observe that our con-
structive approximation shares the property (2.9), due to the last assertion
of Proposition 1.17.) If 7, ~ R ~ p ® v, we can proceed exactly as above
to deduce the conclusion of Theorem 2.1 (a). If R < 4 ® v, one can use the

"To avoid confusion, we remark that the corollary stated below Theorem 3.1 in [10] has
a glitch. It asserts that a decomposition with integrable potentials is essentially always
possible, but the proof overlooks the issue that passing to separate limits in (2.9) is not
possible in general. See [18, 33] for more detailed comments.
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arguments of [3, 18, 34| to obtain the decomposition at least m,-a.s. To ob-
tain it also R-a.s., [18] assumes a priori that there exists m € Il t;, (1, v) with
7w ~ R; this implies m, ~ R by Theorem 1.10. By contrast, we established
that m, ~ R necessarily holds when R ~ pu ® v; cf. Corollary 2.4.

Example 2.16. Consider X = Y = {0,1} with uniform marginals p,v
while R is the uniform distribution on {(0,0), (0,1), (1,1)}. Here I, (1, v)
has the unique element 7, = (d(0,0y + 0(1,1))/2, as this is the only coupling
absolutely continuous wrt. R. We observe that 7, ¢ R. The potentials only
need to satisfy

p(0)+¥(0) =logd  and (1) + (1) =log 3, (2.10)

so that two normalizations are needed to enforce uniqueness. In particular,
the uniqueness of potentials up to an additive constant no longer holds.
Moreover, the formula Cfilﬁ = ¥ cannot hold at (1,0), as m.{(1,0)} =0
would imply (1) = —oo or ¥(0) = —oo, contradicting (2.10). That is, the
decomposition (flLR* = e#®Y¥ holds m,-a.s., but not R-a.s.

2.3.4 Decomposition Implies Optimality

Next, we prove the “Verification” Theorem 2.1 (b). Suppose that 7y € II(u,v)
has a density of the form % = exp(p®1). If p € L(u) and ¢ € L (v), then
E™[p @] = u(p) + v(¢) is independent of m € II(u, v) and Corollary 1.14
directly implies that mop = argmin e,y H(-|[R). (For brevity, we some-
times denote p(p) := [ ¢ dpu.) In this section, we show by an approximation
argument that the conclusion remains valid even without assuming the inte-
grability. In fact, the following result is slightly more precise.

Proposition 2.17. Let U, (1, v) # 0 and let mo € II(p, v) admit a density

log % =¢p®yY R-as.
for some measurable functions ¢ : X — [—00,00) and 1 : Y — [—00,00).
Then

dmg

7 — E™[log 78] is constant over gy, (u,v) U {mo} (2.11)
and 7o =y € Wi (1, v) is the Schridinger bridge.

Of course the constant value in (2.11) is E™[log ‘éllg] = H(mp|R). While
we have not assumed a priori that H(m|R) < oo, this is part of the conclu-
sion, obtained on the strength of the assumption that I, (u,v) # 0.
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Comparing with Theorem 1.10 and the discussion thereafter, Proposi-
tion 2.17 states that the density of my satisfies (1.9) with equality, meaning
that all directional derivatives vanish at mg. In particular, this holds for the
density of the Schrédinger bridge 7, under the conditions of Theorem 2.1 (a).

The main step for the proof of Proposition 2.17 is the following.

Lemma 2.18. Let ¢ : X — [—00,00] and ¢ : Y — [—00, 00| be measurable.
Then
= E™[p @] is constant

over {m € I(p,v) : E™[(p ® )] < 00 or E™[(p ® )7 < oo}.

Proof. Consider the bounded functions
on=(—n)VeAn and ¢, =(—n)ViAn. (2.12)

Writing ¢, = ¢ ® ¥, and ¢ = ¢ @ ¢ and A := {{ > 0}, we have the
properties

{Gn >0} CAC{C>0}C{¢ >0}, (2.13)

0<¢1¢ on A (2.14)

Let m € I(u, v). Clearly (2.13) implies that E™[(T] = E™[(14] and E7[(T] =
E™[(,14]. Using monotone convergence, (2.14) then implies

E™[¢"] = ET[(14] = lim E7[¢a14] = lim E7[(,].

Analogous assertions hold for the negative part with B := {{ < 0} instead
of A. If E™[¢"] < oo or E™[(”] < oo, we can combine the two limits and
conclude that

E™[¢] = ET[¢T] = ET[¢7] = lim E7(¢)] — lim BTG, ] = lim E7[G).

But E™[(,] is constant over m € II(u,v) as (, is a sum of bounded marginal
functions, and the claim follows. O

The following also completes the proof of Theorem 2.1.

Proof of Proposition 2.17. Let m € Lz, (11, v), then E™[(¢ @ 9)1] < oo by
Lemma 1.4 (a). On the other hand, E™[(¢ ® 9)7] < oo as ¢ @ 1 is the
log-density of mp. Thus Lemma 2.18 implies (2.11) and the last claim follows
via Corollary 1.14. O
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Remark 2.19. Another way to argue the optimality of my in Proposi-
tion 2.17, is to define {, = @, ® ¥, as in (2.12) and check the condi-
tions (i)—(iii) of Proposition 1.15. Indeed, (i) is clear. For (ii), we use
|¢n] < |¢] and monotone convergence to see lim, E™[(,] = E™[(]. And
for (iii), e < 1+ e¢ € LY(R) implies lim,, EF[e"] = ER[e¢] = 1.

The following corollary shows in particular that there can be at most one
coupling with density of the form g—g = ¢¥9% R-a.s., and as a consequence,
also at most one cyclically invariant coupling. Notably, this holds even if
Hin(p,v) = 0, which was exploited in [1, 23] to give a meaning to the
Schrodinger bridge . in that situation. When II¢;, (1, v) = 0, all couplings
have infinite relative entropy and thus the Schrédinger bridge problem is not
immediately meaningful as an optimization problem.

Corollary 2.20. Let ,n" € II(u,v) satisfy 7’ < m < R and assume that

dﬂ, dﬂ =~
DY _
—_— = —— € R a.s.

for measurable functions ¢ : X — [—00,00), ¥ : Y = [—00,00). Thenm =7'.

Proof. The assumption implies that ’fl—’: = ¢%9% r-as. Thus, Proposi-
tion 2.17 (with 7 playing the role of the reference measure) yields that =’
minimizes H (- |r) over II(p,v). But as m € II(p,v), it is clear that 7 is the
unique minimizer of H( - |r), thus = = 7’. O

2.3.5 Integrability of Potentials

Finally, we show the claimed integrability of the potentials. As 7, has finite
entropy, it is clear that its log-density ¢ @ v is m.-integrable. The subtlety
is that in general, this does not imply that ¢, v are separately integrable for
the marginals p, v of m, (cf. Remark 2.22 below). A simple counterexample
can be found in [33, Example 1]; see also [18].

Lemma 2.21. Suppose that (2.2) holds, or equivalently p @ v € i, (p, v).
If m € II(u, v) is the Schrodinger bridge and

dmy

dR

log =p®Y R-as.

for some measurable functions ¢ : X — [—00,00) and ¢ : Y — [—00,00),
then ¢ € L' (u) and ¢ € L*(v).
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Proof. Recall from Corollary 1.13 that

dm,
log — € L'(my) for all mg € i (e, v).
dR
In particular, ¢ @1 € L'(pu ® v), which by Fubini implies ¢ € L'(x) and
Y € LY(v); cf. Remark 2.22 below. O

Remark 2.22. A note of caution regarding the last step in the preceding
proof: as mentioned above, for a coupling 7 # u®v, in general, p®1) € L ()
does not imply ¢ € L'(u) or v € L'(v).

Let 7 € TI(, v) have disintegration 7 = u(dz)® K, (dy). If o® € L(r),
Fubini’s theorem for kernels (i.e., tower property of conditional expecta-
tion) states that for a.e. x we have ¢(z) + w() € LYK,) and [[p(z) +
Y(y)] Kz(dy) € LY(u), and moreover that [[[p(z) + 1 (y)] Ku(dy) p(dz) =
[ ¢ @ ¢r(dz, dy)

Clearly [[o(z) + ¥(y)] Kuo(dy) = ¢(z) + [(y) Ku(dy) =: p(2) + V().
On the other hand the fact that this sum is in L' ( ) does not imply that ¢
(or ) is p-integrable on its own.

The situation is different for the particular coupling 7 = p ® v used in
the proof of Lemma 2. 21 As the kernel K, = v does not depend on z,
the above function ¥(z) := [ (y) v(dy) cannot depend on x. The constant
a = U(z) must be ﬁmte because go( )+ ¥(x) must be finite p-a.s. Now, the
fact that ¢ +a € L'(u) indeed tells us that ¢ € L(u).

The above proof of Lemma, 2.21 through Corollary 1.13 is short yet some-
what indirect. Next, we offer an alternate argument.

Lemma 2.23. Let m € II(p,v) and log g—g = p@Y R-a.s. for some measur-
able functions ¢ : X — [—00,00) and ¢ : Y — [—o00,00). If

(poy)t € Li(pow),
then ¢ € L' (i) and € L' (v). Moreover, u(p) + v(¢p) = H(n|R).

Proof. We have E™[(¢ @ 1)~] < 0o as ¢ @ 1 is the log-density of 7; in fact,
E™p & ] = H(w|R) > 0. In view of our assumption, Lemma 2.18 then
guarantees that EF®"[p @ 1] = E™[p @ 9] = H(w|R) > 0. In particular, we
also have (¢ @ ¥)~ € L'(p ® v). Thus ¢ @1 € L*(u ® v) which by Fubini
implies ¢ € L'(u) and ¥ € L'(v); cf. Remark 2.22. O

Another Proof of Lemma 2.21. Let p ® v € I (p,v) and let m € II(p,v)
satisfy log 9% = ¢ @ 1) R-a.s. Then E*®¥[(¢ @ 1)T] < co by Lemma 1.4 (a),
so that Lemma 2.23 yields ¢ € L'(u) and v € LY(v). O
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3 Duality for Static Schrodinger Bridges

In this section, we characterize the Schrodinger potentials ¢y, 1, as the so-
lution to a “dual” optimization problem. Let (X, ) and (Y, v) be probability
spaces. We fix a reference measure R € P(X x Y) and assume that there
exists m, € II(u, v) with a density of the form

dms
% =e?* P Roas. where ¢, € L'(u), . € L*(v). (3.1)

By Corollary 2.3, this implies that H(m«|R) = p(p«) + v(1x) < oo and that
T, = argmingy, ) H (- |R) is the unique Schrédinger bridge. We have seen
in Theorem 2.1 (a) how (3.1) is necessarily satisfied when R ~ p ® v and
p®@ v € ipn(p,v), but those conditions will not be needed directly.

The following fact, sometimes called weak duality, is the first half of the
duality relation.

Lemma 3.1. Let 7 € II(p,v) and (@,v) € L*(p) x L*(v). Then
H(rIR) 2 ulo) +v(0) ~ [ ¥V dR+1.

Proof. Let m € T(u,v) and ® € L'(7). As in (1.13), Fenchel’s inequality
yields aclogov — e > Bov — €P, or equivalently

aloga—fa>a—e® forall a>0, BeR. (3.2)
Write Z = dr/dR. Using (3.2) with a = Z(z,y) and § = ®(x,y) yields the

inequality in

H(w]R)—/ZlogZdR—/(I)ZdR+/(ZlogZ—<I>Z)dR

z/@ZdR+/(Z—e@)dR:/cbdw—/e‘l’dRH.

If & =pdfor p € L(p) and ¢ € L (v), then [@dr = u(p) +v(¥) as 7
is a coupling. The claim follows. O

The next result shows that the Schrodinger potentials ., 1, are the
maximizers for the concave dual problem

sip Glow), Glo) = (o) + v() — / PR +1 (3.3)
peL(p),peL(v)

and that there is no “duality gap” between the primal (entropy minimization)
problem and the dual problem.
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Theorem 3.2 (Duality). Let (3.1) hold.'> We have

inf H(n|R) = sup () +v(y) — /e‘peaw dR+1, (3.4)
m€ll(pv) pEL (), pEL (v)

the supremum is attained by the Schrodinger potentials (p«,1¥y), and

HrR) = inf  H(m|R) = (o) + ().
well(p,v)

The mazximizers are unique in the sense that if (p, 1) are other mazimizers,
then o © Y = 0, ® Yy R-a.8.3

Proof. The inequality “>" in (3.4) follows from Lemma 3.1. On the other
hand, (3.1) yields

HmR) = [ (oo dn. = ) + v(62)

/e%% dR = /1d7r* =1,

so that equality is attained in (3.4) for 7., @, ¥. This shows (3.4), that
(x, ¥x) are maximizers, and also that H (7| R) = pu(v«)+v(14). Uniqueness
follows from the strict concavity of the dual problem. O

and

Remark 3.3. An alternate way to write a dual problem is

sup w(p) +v(y) —log / P dR. (3.5)
pELY(p), YLl (v)

Lemma 3.1 and Theorem 3.2 apply to this dual problem without changes.
One way to obtain the weak duality for (3.5) is to recall (1.1) which, with
¢ == ¢ ® 1), already yields H(n|R) > p(p) + v(v) — log [ e?®¥ dR for all
bounded ¢, . This extends to integrable ¢, 1 by a dominated convergence
argument, and now the analogue of Theorem 3.2 follows as before.

Remark 3.4 (Euler-Lagrange). The Schrodinger equations (SE1)-(SE2) in
Section 2.1 can be interpreted as the Euler-Lagrange equations of the con-
cave maximization problem (3.3); i.e., as the variational first-order condition
for optimality. To see this, fix ¢ € L'(u), ¥ € L'(v) and let i/ be the first

12The integrability condition can be weakened to (p.®v.)" € L' (u®v) by Lemma 2.23.
131f R ~ 1 ® v, this implies that ., . are a.s. unique up to an additive constant; cf.
Corollary 2.12.
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marginal of the measure dr(yp,v) := e#®¥ dR. Consider a bounded measur-
able function ¢ : X — R and ¢ € R, then

G, ) — Gl + 200, ) = / (e — 1) d(p, ) — eu(po)

= /(65”0 — 1) dp’ — ep(eo)
= e[t/ (o) — u(po)] + o(e).

If ¢ = argmaxG(-,v), we must have G(p, %) — G(¢ + €pp, 1) > 0, hence
1 (o) = p(po) for all bounded . It follows that u' = p, or equivalently
that ¢ solves (SE1). Similarly, (SE2) is the first-order condition for ¢ =
argmax G(¢p, ).

4 Entropic Optimal Transport

Let (X, ) and (Y, v) be probability spaces and II(u,v) the set of couplings
on the product XxY. We also fix a probability measure P € P(XxY); it can
be arbitrary for now but will soon be chosen as the product P = p®v. Given
a measurable “cost” function ¢ : X X Y — (—o00, 0o] with P{c < oo} > 0, the
entropic optimal transport (or EOT) problem with regularization parameter
e>01is

Ce =Co(pyv,0) = ﬂeliirbfl V)/cdw + eH (7| P). (eEOT)

For simplicity, we assume for the moment that ¢ is uniformly bounded from
below, so that the terms on the right-hand side are always well-defined
in (—oo,00]. Dividing (¢EOT) by e transforms it into a similar problem
with € = 1 and cost function ¢/e,

Ce(p,v,c) = eCi(u,v,c/e),

and moreover these problems have the same minimizers.!* For our basic
considerations, it thus suffices to consider € = 1, simplifying the notation:

Ci=Ci(p,v,c) = Weli]r%i ZI)/cdﬂ' + H(~w|P). (EOT)

As ¢ is bounded from below, e~¢ is bounded and in particular

e ¢ e LY(P), (4.1)

M However, in contrast to the unregularized transport problem, there is no simple rela-
tion between Ci(u, v, c/e) and C1(p, v, ¢) or between the corresponding minimizers.
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so we can introduce the auxiliary reference measure R € P(X x Y) via
dR:=a le ¢dP = ¢ (ctlog) gp 4= /ech > 0. (4.2)

We note that R < P and moreover R ~ P if and only if ¢ < co P-a.s.
For m € P(X x Y) with 7 < R, we have

dm dm dP
H(m|R) = /log <dR> dw-/log <deR) dm
= H(w|P) + /log (e®) dm = /cdﬂ' + H(m|P) + log .
This identity extends to arbitrary = € P(X x Y); in brief,
F() ::/cd7r+H(7r|P) = H(w|R) — log a, (4.3)

showing that the entropic transport problem (EOT) is equivalent to the static
Schrédinger bridge problem for R:

Ci= inf H(wR)—loga (4.4)
mell(p,v)

and both problems have the same minimizers. If [ e¢dP = 1, the problems
are identical.

Using the notation IIg;,(p,v) for couplings with finite entropy H(-|R)
as in Section 2, we also see that

T €Mpn(u,v) <= F(r)<oo <= ceL(r)and H(n|P) < oo.
(4.5)
We have reduced (EOT) to the Schrodinger bridge problem. Conversely,
starting with any probability measure R < P, we can introduce a measurable
function ¢ : X x Y — (—o00, 0] with P{c < oo} > 0 via

dR

c(x,y) := —log P

Then a = [e “dP =1 and we see that the Schrodinger bridge problem is
also a particular case of (EOT), as least when ¢ is bounded from below. To
remove the latter restriction, we extend (EOT) as follows.!?

15Tn most cases of interest, the cost function ¢ is bounded from below and finite-valued,
like the quadratic cost ¢(z,y) = ||z — y||* on R? x R%. We consider more general cases
mainly have the full equivalence with the Schrédinger bridge formulation.
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Remark 4.1. We extend (EOT) to costs ¢ which are not necessarily bounded
from below, but instead merely satisfy (4.1). There is a slight delicacy re-
garding the right-hand side of (EOT), as it might read —oo + co. We define

Fr) ::/cdﬂ—i—aH(ﬂP) ::/(c—i—logc(il;)) dr.

The latter integral is always well-defined in (—o0, 00]; indeed, it is equal to
H(mw|R)—log o. Thus we avoid the expression —oo+o00 and more importantly,
(4.3) remains valid for all 7 € P(XxY). More generally, all the considerations
above (and below) remain valid for this extension, except possibly the last
part of (4.5)

While we have considered a general P so far, let us now specialize to
P = p®wv. Then (4.5) for the product coupling 7 = 4 ® v becomes

p@v € My (u,v) = ce LY (p@v). (4.6)

In particular, the condition p ® v € Ilf;,(p,v), or equivalently (2.2), boils
down to a standard integrability condition on the cost function.

The next result translates Theorem 2.1 to the present setting; for part (a)
our proof thus assumes that (X, u) and (Y, v) are separable.

Theorem 4.2 (Structure Theorem for EOT). Let C; < co. Then there is a
unique minimizer m, for the entropic optimal transport problem (EOT).

(a) Let ¢ < 0o p® v-a.s. Then m, ~ p ® v and there are measurable
functions ¢ : X = R, ¥ : Y — R, called EOT potentials, such that

dﬂ'* _ e@@qp,c

) nRv-a.s.

The EOT potentials are a.s. unique up to an additive constant.' If
ce LY (p®v), then p € LY(u) and ¢ € L1(v).

(b) Conversely, let mg € I, v) admit a density of the form

dﬂ-o _ e@@wic

) nRv-a.s.

for some functions ¢ : X — [—00,00), ¥ : Y — [—00,00). Then m is
the minimizer . and @, are the EOT potentials.

161 e., if ¢’ 1) are potentials, then ¢’ = p—+a p-a.s. and 1)’ = 1) —a v-a.s. for some a € R.
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Proof. Taking into account (4.2), (4.3) and (4.6), this is a direct application
of Theorem 2.1 and Corollary 2.4. In (b), we did not require explicitly that

p, 1) are measurable. Indeed, o By = c+log d(ig)u) is necessarily measurable,
and hence ¢ and 1 are (a.s.) measurable due to Remark 2.13. O

As a consequence of Theorem 4.2, m, can be also be characterized by a
cyclical invariance property as in Section 2.2. We do not detail this here,
but instead state the definition in Section 5.3 where it is also applied.

Remark 4.3. The EOT potentials in Theorem 4.2 differ from the Schrédinger
potentials in Theorem 2.1 by a constant. In the literature, both are often
called Schrédinger potentials, a slight inconsistency. Indeed, if ¢, are the
Schrédinger potentials as in Theorem 2.1,

ﬂ — @ dR — e(@@'zﬁ—log a)—c
dpev) dRd(p®v)

so that the sum of EOT potentials in the sense of Theorem 4.2 is shifted
by log «. On the other hand, this is convenient as it corresponds exactly to
the shift in (4.4). For instance, the duality in Theorem 4.7 below takes the
same form as Theorem 3.2.

)

In contrast to a scaling of the cost as discussed below (¢EOT), the next
two remarks treat transformations that are separable and hence do not affect
the optimizers. A simple transformation is to shift the cost ¢ by a function
of x or y alone; in particular, this allows us to relax the integrability condi-
tion (4.1).

Remark 4.4 (Shift of Cost). Let ¢; € L'(u) and ¢ € L'(v). Then
Ci(p,vie+e1® e2) = Ci(p, v, ¢) + pler) + v(e2)
and, if finite, both problems have the same minimizer m, € I(u,v).

Sometimes the entropic optimal transport problem is considered with
entropy relative to a measure different from the product of the marginals.
As long as that measure is also product, it still suffices to study (EOT).

Remark 4.5 (Different Reference). Let ' € P(X),r" € P(Y) and consider

Ci = inf /cdw+H(7r|,u'®u'). (4.7)
well(p,v)
Then
C1=Ci+ H(plp') + H(v|V')
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and if C] is finite, both problems have the same minimizer m,. € II(u,v).
More generally, we have

H(rlp' @ V)= H(rlp@v)+ H(p|p') + H(v|) forall = ell(u,v).

Indeed, for m € M(u, v) with 7 < ' ® v/, we necessarily have p < p’ and
v < V. This implies p ® v < ¢/ ® V' and then

H(r|p' @) :/log <d(ud<7§; V) (Ziﬁfgz?))

= H(rlp®v) +/ {mg (i’ﬁ(@) +log <j:/(y)>] w(dz, dy)
— H(xlu®v) + H(uly) + H|).

Whereas if 7 € @/ ® 1/, then either 7 € p® v or p & 1/ or v € 1/, so that
both sides are infinite.

We can note that Remark 4.4 and Remark 4.5 are two sides of the same
medal: if H(ulp') < oo and H(v|V)) < oo, then ¢ := log g—ﬁ, € L'(u)
and ¢y = log% € L'(v). For m € II(u,v) we thus have [c¢1 @ codn =
H(p|p')+ H(v|V'), so that (4.7) can be seen as the problem (EOT) with our
usual entropy relative to p ® v but changed cost ¢ := ¢+ ¢1 @ co.

In the context of entropic optimal transport, the general inequality of
Corollary 1.12 is strengthened to an equality: the suboptimality of a cou-
pling 7 (in terms of cost) is exactly given by its entropy relative to m,. If we
think of the entropy as a notion of distance, this reflects the strict convexity
of entropic optimal transport in a quantitative way.

Proposition 4.6. Let C; < oo and ¢ < 00 p ® v-a.s. Denote F(mw) :=
[cdr+ H(r|lp®v) as in (4.3). The minimizer 7, of (EOT) satisfies

F(r) — F(my) = H(w|my)  for all 7€ (p,v) with F(7) < oo.

Proof. In view of Theorem 4.2 and Proposition 2.17, Corollary 1.12 yields
H(r|my) = H(w|R) — H(m«|R) and we conclude via (4.3). O

Finally, we translate our duality results to the current setting. For sim-
plicity, we use the slightly less general condition ¢ € L!(u ® v).

Theorem 4.7 (EOT Duality). Let c € L'(u®v). Then

= sw ) er) - [T A 1 @)
pELY (), YeL(v)
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the supremum is attained by the EOT potentials @, € L'(u),v. € L'(v),
and

C1 = p(epx) + v (ts). (4.9)

The maximizers are a.s. unique up to an additive constant.

Proof. In view of Theorem 4.2 and p® v ~ R, ¢ € L'(u ® v) implies the
assumption of Theorem 3.2. The claims then follow from Theorem 3.2 and
Theorem 2.1. O

Remark 4.8. (a) In Theorem 4.7, the assumption ¢ € L!(y® v) guarantees
that the minimizer m, € II(u, v) exists and has a density of the form

dmy

——TE = e OPee ® v-a.s. ith o, € LY(p), ¥, € L' (v). (4.10
D 7 with ¢ (), ¥ (v). (4.10)

As in Theorem 3.2, we can omit the assumption ¢ € L!(u®v) and directly as-
sume (4.10) instead; moreover, we can weaken the integrability requirement
to (0 ® )" € L (n ).

(b) As in Remark 3.3, Theorem 4.7 also holds for the dual problem

swp () +v(v) ~log [ T dus ),
peL (), el (v)

4.1 Regularity of Potentials

Next, we exemplify how the Schrodinger equations can be used to establish
regularity properties of the potentials. As in Theorem 4.2 (a), let ¢, ¥ be the
EOT potentials such that

dmy

=P @ u-as.
d(p®v) :

As in Section 2.1, the fact that m, is a probability measure with marginals
and v implies the Schrodinger equations

p(z) = — log/ew(y)_c(x’y) v(dy) p-as.,

(4.11)

Y(y) = —log/e@(x)c(‘”’y)u(dx) v-a.s.

A priori, ¢,1 are only defined p-a.s. and v-a.s., respectively. To discuss
pointwise properties such as continuity, we would like to define the potentials
at every point, not only almost-surely. Indeed, we can choose natural versions
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of , 1 defined everywhere on X,Y by using the right-hand sides as of (4.11)
as pointwise definitions for the left-hand sides. With that choice, (4.11) holds
everywhere on X x Y, even without the a.s. qualifiers.

As the Schrodinger equations express one (exponentiated) potential as
a convolution of the other potential with the kernel e~¢(#¥) they can be
used to study how the potentials inherit regularity properties from ¢ (e.g.,
[5, 13, 27, 28]). Below, we give two basic examples of such a priori estimates;
one could similarly estimate derivatives, etc. We mention that (4.11) can
be seen as an analogue of the c-conjugacy relation between the Kantorovich
potentials in unregularized optimal transport (e.g., [35]) which has been used
used extensively to derive regularity properties in that context.

Lemma 4.9. Let c € L' (u®v) and let p, 1) be versions of the EOT potentials
satisfying (4.11) everywhere as well as p(¢) > 0 and v(yp) > 0. Then

i [e(o,) — 0(v)] < 9(a) < [ ey vidy)

yeyY

inf [e(2.9) ~ ¢(@)] < 0(0) < [ c(o.9) uldo)

zeX
for allz € X and y € Y. If ¢ is bounded, then
a<p<b, a<yp<b

fora=—|c |loo — llct|lo and b = ||ct||oc. Whereas if ¢ is merely bounded
from below and e € L' (u ® v), then

D
IN
<

a <,

fora = —||c” ||oo — log HeCHLl(;@w

Proof. Using (4.11), Jensen’s inequality and v()) > 0,
pla) = —log [ e00-cle) y(ay)
< [ 10 + clavy)] vdy) < [ el ) vian)
For the lower bound, (4.11) yields

o(z) > —log / ey W) @] ()

= —sup [¢(y) — c(z,y)] = inf [e(z,y) — ¥ (y)].

yeyY yeY
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The proof of the first claim for ¢ is symmetric.

If ¢ is bounded, the above upper bounds imply ¢,1 < |l¢*||s. Using
this in the lower bound then also yields the lower bound a. If ¢ is merely
bounded from below, we have

€_SO($) _ /ew(y)—c(r,y) y(dy) < €||C*||oo /€¢(y) u(dy),

and for the latter integral, the upper bound and Jensen’s inequality imply

/e¢(y) v(dy) < /efc(x,y) M(dw)y(dy) < /ecd(u ®v).

The claimed lower bound a follows by taking logarithm. O

Remark 4.10. In Lemma 4.9, the condition that u(¢) > 0 and v(¢p) > 0
depends on the chosen normalization. If [e™“d(p®v) < 1, then (4.9) implies
that the condition holds for two popular choices, the normalization p(¢) =0
and the symmetric normalization u(p) = v ().

Let w: Ry — R4 be a modulus of continuity; i.e., continuous at 0 with
w(0) = 0. In the following lemma, we assume that some metrics dx, dy are
given on X, Y.

Lemma 4.11. Let ¢, 1) be versions of the EOT potentials satisfying (4.11).
If ¢ is uniformly continuous with modulus w in both variables, then v, are
uniformly continuous with the same modulus w.

Proof. Let x1,x9 € X satisfy ¢(x1) > ¢(x2). Then
[p(@1) — p(22)]|
~ log / PO -e@29) 1 (dy) — Tog / PO —ew19) 3 ()
~ log / ecl@10) (@) +HW)=e19) (@) — log / PO =ewy) 4 ()
< log [esupyev le(@1.y)—e(z2.)| / W) —c(z1.9) V(dy)] " log / W =cw1) ()

= sup [e(21,y) — c(z2,y)| < w(dx(21,72)).
yeyY

The case ¢(x1) < ¢(x2) follows by symmetry and the proof for 1 is analo-
gous. O
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Lemma 4.11 shows in particular that the potentials can inherit a Lips-
chitz constant from ¢. On the other hand, uniform continuity is a strong
assumption if the spaces X,Y are unbounded. We remark that the proof of
Lemma 4.11 can be modified to alleviate this, for instance if a decay condi-
tion on the tails of y, v is given. As an example, c¢(x,y) = —z -y on R? x R?
is not uniformly continuous (this is the quadratic cost ||z — y||?/2 after ap-
plying Remark 4.4), but assuming the that marginals are subgaussian, the
conjugacy relations still imply regularity of the potentials; cf. [27].

For ease of reference, we conclude this section by explicitly stating some
formulas for the problem (¢EOT) with regularization parameter £ # 1.

Remark 4.12 (Rescaled EOT Potentials). Let C. < oo, then Theorem 4.2
applied to ¢ := ¢/e immediately yields that the solution 7. of (¢EOT) satisfies

d((/itgy) = e#®V=¢/e |, ® v-a.s. It is sometimes convenient to consider the

rescaled EOT potentials'” o, := ep and 1. := e, for which the optimal
density takes the form

d'ffe PeBe—c

e c -a.S. 4.12
o) e U ® v-a.s (4.12)

There is no benefit regarding the Schrédinger equations, which now read

e(y)—c(=,
() = —Elog/e¢ ) v(dy) p-as.,
(4.13)

e(@)—c(z,y)
Ve(y) = _510g/6¢5y p(dx)  v-a.s.

On the other hand, the regularity results take the same form as for ¢ = 1:
after replacing (¢, 9) by (¢e, ¢ ), Lemma 4.9 and Lemma 4.11 hold verbatim.
This may be a first hint that (¢, ).) are at a natural scale. If ¢ € L' (u®v),
the duality can be stated as

PDY—c

C. = sup wip) +v(y) — 6/6 = dpev)+e (4.14)
wELY (), YL (v)

with the supremum now attained by the rescaled EOT potentials (g, ¥).
Thus

Ce = N(‘Pe) + V(we)a (4‘15)

again taking the same form as for ¢ = 1.
Another motivation to use the rescaled potentials will be detailed in
Section 5.4: in the limit ¢ — 0, the potentials without rescaling would

"In the literature, all these functions are generally called Schrédinger potentials or
merely potentials. We are adding some terminology to differentiate them more clearly.
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blow up, whereas (p.,1):) converge to their analogues in the unregularized
transport problem (the Kantorovich potentials). This again suggests that
(e, 1) are at a natural scale.

5 Convergence to Optimal Transport

As in Section 4, let (X, 1) and (Y, v) be probability spaces, II(u, v) the set of
couplings and P € P(X xY). Moreover, ¢ : X x Y — (—o0, 00| is measurable
with P{c < oo} > 0. In this section we study the limit £ — 0 of

C.= inf /Cdﬂ' + eH (7| P). (¢EOT)
mEM(p,v)

Under suitable conditions, we expect convergence to the (unregularized) op-
timal transport problem that corresponds to € = 0,

Co= inf /Cdﬂ’. (OT)
mell(p,v)
Specifically, we are interested in the convergence of three objects: the value
functions C., the optimal couplings 7., and the rescaled EOT potentials
(8067 wa)
We first recall some notions from optimal transport. The dual optimal
transport problem is'®

sup 1) +v(v), (5.1)
peL (), peL (v), p@p<c

and we call any solution (yg,%9) a pair of Kantorovich potentials. The
optimal transport problem also has an analogue of the cyclical invariance
property, but here the definition refers to the support of the coupling. A set
I' € X x Y is called c-cyclically monotone if for all k > 1,

k
C(%ﬁyi) S Zc(xi7yi+1) for (5517%) € F7 1 S 1 S k;7 (52)
i=1 i=1
with the cyclical convention yiy1 := y1. A measure 7 is called c-cyclically

monotone if it is concentrated on a c-cyclically monotone set I'. We will
only use this notion when the cost function ¢ is continuous, and then it

8More precisely, the supremum is taken over ¢ € L'(u), v € L'(v) admitting versions
with o @ ¢ < ¢ everywhere on X x Y. If XY are Polish and c is upper semicontinuous,
that holds as soon as ¢ ¥ < ¢ p ® v-a.s.
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is equivalent to require that the support sptm« be c-cyclically monotone,
where spt 7 is the smallest closed set A C X x Y with 7(A4) = 1.

The optimal transport problem lacks the general smoothness of (¢EOT),
hence the regularity properties of ¢ will be more important in this section. If
X, Y are Polish spaces and ¢ € L' (u®v) is lower semicontinuous and bounded
from below, the following results are standard (see [35, Theorem 5.10, Re-
mark 5.14|): (OT) admits a minimizer (“optimal transport”) my € II(u,v),
the dual problem (5.1) admits Kantorovich potentials (¢, 10), and we have
the optimal transport duality

Co = p(wo) + v(2o). (5.3)

Moreover, 7 € II(p, v) is an optimal transport if and only if it is c-cyclically
monotone. The problems (OT) and (5.1) are linear, hence uniqueness does
not hold in general. Nevertheless, uniqueness is known for many important
examples (see [35]).

For our goal of connecting (¢EOT) with (OT), the following example
illustrates that lower semicontinuity of ¢ alone is not sufficient.

Example 5.1. Consider the lower semicontinuous cost function

e(z,y) = {1, T £y,

0, z=y

with marginals ¢ = v = Unif[0,1] and P = g ® v. Then any 7 € II(u,v)
with 7 < P has transport cost [ ¢dr = 1. On the other hand, the identical
coupling 7y = pu®,0, (which corresponds to the transport map T'(z) = x) has
vanishing transport cost, and it is the unique optimal transport. Moreover,
any Kantorovich potentials ¢g, 1o of (OT) must satisfy @g(z) + ¥o(xz) = 0
p-a.s. We observe that

(i) Cc =1 does not converge to Cy = 0,
(ii) 7z = pu ® v does not converge to m,

(iii) the rescaled EOT potentials p.®1. = 1 do not converge to Kantorovich
potentials.

The disconnect between the problems is apparent: the optimal transport mg
exploits the smaller values of ¢ on the diagonal, whereas the regularized
problem does not “see” the diagonal (or any u ® v-nullsets), hence for this
problem the cost ¢ is equivalent to a constant cost ¢ = 1.
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We are mainly interested in continuous costs ¢ and entropy relative to
P =p®vin (¢EOT). Some basic results can be stated in greater generality
without any additional effort. One restriction we impose throughout is that

¢ is bounded from below. (5.4)

This ensures that [ cdr is well defined and the transport cost ™ — [ cdn
is weakly lower semicontinuous on II(u,r) when ¢ is lower semicontinuous.
The lower bound can often be relaxed to ¢ > ¢; © ¢ € L'(u) @ L'(v) by
applying our results to ¢ = ¢ — ¢; @ c2 > 0 and using Remark 4.4 as well as
its analogue for optimal transport.

5.1 Convergence of Value Functions

Clearly the value function C. of (¢EOT) is monotone decreasing as ¢ > 0
decreases, hence lim._,yC. > Cy. Our aim is to show that lim. .o C. = Co;
that is, we retrieve the value function of (OT) as the regularization parameter
tends to zero. In this section, X,Y are Polish and P € P(X x Y) is arbitrary.

To show that lim._.oC. = Cy, we can work with the primal or the dual
problem. On the primal side, it suffices to show that there exists an almost-
optimal transport with finite entropy as follows.

Lemma 5.2. Suppose that given n > 0, there exists ©" € I(u,v) with
[ edn < Co+n and H(7"|P) < oo. Then lim._,oC:. = Cp.

Proof. Given 1 > 0, we have
C. < /cdw" + H(x"|P) < Co+n + <H(x"| P).

Thus lim.9C: < Cy + 1, and n > 0 was arbitrary. O]

There are different ways to produce this almost-optimal transport 7.
One is to take the entropic optimizer 7. (which of course has finite entropy)
and check that it is almost-optimal for (OT). This idea is investigated in
Section 5.3. Another idea is to take an optimal transport for (OT) and “smear
it out” such as to ensure finite entropy without affecting the transport cost
too much, which is the approach we present next.

Lemma 5.3 (Block Approximation). Let ¢ be continuous and bounded.
Givenn >0 and 7 € M(u,v), there exist @ € I(u,v) such that

‘/cd%—/cdw

<n and _dar s bounded.
d(p®v)
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Proof. Step 1. We first suppose that 7 is concentrated on a compact set
K = Kx x Ky. Given § > 0, compactness of Kx yields a measurable finite
partition Aq,..., Ay of Kx with diam A; < 4, and similarly Bjy,..., By
for Ky. Consider the “block approximation”

= ZTF(AZ‘ X Bj) i @vj, i = p(A) s, vi= V(Bj)_ly\Bj.
i,J

Note that 7 € II(u,v) and d7/d(p ® v) is bounded (for fixed ¢). Moreover,
uniform continuity of ¢ on the compact K implies that [cd7 — [cdr as
6 — 0; note that both integrals are comparable to 3, . c(xi, y;)m(A4; x Bj)
for arbitrary x; € A; and y; € B;.

Step 2. To treat the general case, let § > 0. As 7 is tight, we can find a
compact K = Kx x Ky such that 7(K) > 1— 9. Let

I "no.__ /
T =Tk, T =T —.

By Step 1, there is a measure 7’ having the same marginals as 7’ such that
di'/d(p ® v) is bounded and | [ cdr’ — [cdr'| <n. If 7" #0, let (u”, ")
be the marginals of 7" and let 7#” be their product coupling

7’;('_// — /J/”(X)_l /J/” ® V//.
As ¢ is bounded and 7”(X x Y) < §, we have [cd7” — 0 and [cdn” — 0

for § — 0. Moreover, di”/d(p ® v) < p”"(X)~!. In summary, the coupling
7 =7+ 7" € II(u, v) satisfies the assertion. O

Corollary 5.4. Let ¢ be continuous and bounded. If H(u® v|P) < oo, then
limE*}O CE — CO-

Proof. Let n > 0 and 7 € II(u,v) an optimal transport for (OT). Applying
Lemma 5.3 to m yields © € II(p,v) with [cdi < Co+ n and d7/d(p ® v)
bounded. The latter implies H(7|P) < oo due to H(u ® v|P) < oo, so
Lemma 5.2 applies. O

While not needed here, we mention that the block construction can be
used to further quantify the distance between 7 and 7. In the proof of
Lemma 5.3, boundedness of ¢ is used for the convergence [cdr” — 0. At
least in some cases, a block approximation can also be implemented for
unbounded costs (see [6, 22]). For the present purpose it is not important to
obtain a bounded density; finite entropy is sufficient. But even so, the simple
approximation from Step 2 in the proof is rather crude. Instead, one may
typically have to divide the whole domain into small blocks and carefully
control the resulting entropy. In Sections 5.3 and 5.4 below, we explore a
different route to obtain lim._,y C. = Cy for unbounded cost: the convergence
of primal and dual optimizers, respectively.
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5.2 Convergence of Optimal Couplings for Finite Entropy

Since 7. minimizes the entropy among all couplings having the same (or
smaller) transport cost [ edm, it is intuitive that the limit as e — 0 should
have the same property: m. should converge to the optimal transport with
minimal entropy—provided that such a transport exists. The next result
makes this precise. It turns out that the driving ingredient is the conver-
gence C. — Cp of the value functions (as provided by Corollary 5.4 above or
Theorem 5.10 and Corollary 5.17 below); if that is taken as a primitive, the
analysis falls into the general framework of Section 1 and the conclusions
follow easily in a very general setting. Thus, in this section, X,Y are general
measurable spaces and P € P(X x Y) is arbitrary. We suppose that C. < oo
for some (and then all) ¢ > 0 and write I,y (1, v) for the set of all optimal
transports; i.e., all 7 € II(p, v) with [ cdm = Co.

Theorem 5.5. Suppose that lim._,oC. = Cy. Then the following are equiv-
alent:

(1) lime_o H(7:|P) < o0,
(ii) (mz) converges in variation and H(lime_o | P) < 00,
(i) there exists m € op(p, v) with H(mw|P) < oo.

Under those conditions, the limit m, = lim, 7. is the (unique) optimal trans-
port with minimal entropy:

e = argmin H(-|P).
Hopt(lj‘rl’)

Moreover, H(m.|P) — H(m|P) as well as

dm, dme . 1
H(my|me) = 0 and log 7 log p " L (my).
Proof. Let m. be the optimizer of (¢EOT). The additive form of (¢EOT) and
the optimality of the couplings imply that
H(me|P) < H(me|P) and /cdﬂ'8 > /cdw€/ for e>¢ >0. (5.5)

Denote Q := I,y (1, v) and

Q. = {WGH(N,V): /cdﬂg /cdﬂa}.
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Then Q. is a closed convex set and . = argming_H(-|P). The second
part of (5.5) implies that Q. D Q. for ¢ > &', and moreover N.Q. = Q due
to [cdr < [edm. <C. — Cp for m € N-Q.. This puts us in the setting of
Proposition 1.17 which provides all the claims. O

The typical applications for Theorem 5.5 concern discrete and semi-
discrete optimal transport (semi-discrete meaning that one marginal is dis-
crete and the other continuous). When both marginals are continuous, typ-
ically all optimal transports are singular with respect to P, and then The-
orem 5.5 only tells us that that (7.) cannot converge in variation. In any
event, we can deduce the following dichotomy about the speed of convergence
Cs — Co.

Corollary 5.6. We have C. — Cy = O(e) if and only if (OT) admits an
optimal transport with finite entropy. More precisely,

Cc =Co+cH(mi|P)+o0(e) if me=argminH(-|P)
Hopf(ﬂvl’)

whereas lim e~ (C.—Cp) = oo if (OT) admits no optimal transport with finite
entropy.

Proof. Clearly [ cdm. > Cp, hence we have the lower bound

- dr. + eH(r.|P) —
Cfgc(’:fc ”*85(”’) > Him|P). (5.6)

Suppose there is no optimal transport with finite entropy. If C. — Cy, then
Theorem 5.5 applies and yields lim H(7;|P) = oo, so that (5.6) implies
lime ! (C. — Cp) = 0. If C. 4 Co, then lime™1(C. — Cy) = oo is trivial.

Otherwise, let m, := argminy,_ () H(-[P) be the optimal transport
with minimal entropy. We have

C. < /Cdﬂ'* + eH(m|P) = Co + eH (74| P)

and hence the upper bound

C. —Co
9

< H(m.|P). (5.7)

This shows in particular that lim.C. = Cy. Hence Theorem 5.5 yields
lim. H(7:|P) = H(m«|P) and now the claim follows from (5.6) and (5.7). O
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5.3 Weak Convergence of Optimal Couplings

In this section, X,Y are Polish and we study the convergence of () in the
sense of weak convergence. In many continuous examples, (OT) admits a
unique optimal transport m, given by a transport map (see [35]) and hence
e & @ v. On the other hand, 7. < p ® v (at least when P = p1 ® v), so
that m. cannot converge to m, in variation. By contrast, we shall see that
weak convergence holds under general conditions. As before, P € P(X x Y)
is arbitrary.

As a first step, we recall that II(u,v) is weakly compact. We state a
slightly more general result for families of marginals.

Lemma 5.7. If M C P(X) and N' C P(Y) are weakly compact, then the set
{rel(p,v):peM,ve N} CPXxY) is weakly compact.

Proof. Let 6 > 0. By Prokhorov’s theorem there is a compact set Kx C X
with pu(Kx) > 1—9 for all 4 € M, and similarly for Y. If 7 € II(u,v) for
some (p,v) € M x N, then m(Kx x Ky) > 1 — 2§. By the reverse direction
of Prokhorov’s theorem, this shows that {m € (u,v) : p € M, v € N}
is relatively compact. To see that it is weakly closed, consider a sequence
7 € I(pin, vy) such that 7, — 7 weakly for some 7 € P(X x Y). As the
coordinate projection X x Y — X is continuous, it follows that u,, converges
weakly to the first marginal p of 7w, and u € M by the closedness of M.
Similarly for the second marginal. O

For the fixed marginals (¢, v), Lemma 5.7 shows in particular that II(u, v)
is weakly compact, and hence the following.

Lemma 5.8. Ife, — 0, then (n.,) has a weakly convergent subsequence and
the limit is in II(u,v).

We want to show that this limit is an optimal transport. Two approaches
will be exemplified. The first is straightforward: we take lim._,oC. = Cy for
granted (e.g., from Corollary 5.4) and deduce optimality from the lower
semicontinuity of the transport cost.

Proposition 5.9. Let ¢ be lower semicontinuous and lim._,qC: = Cy < 00.
If e, — 0 and lim, 7., = 7 weakly, then © € I (p,v) is an optimal transport.
If (OT) admits a unique optimal transport m,, it follows that lim._,o me = T
weakly.

Proof. As c is lower semicontinuous and bounded from below, Portmanteau’s
theorem yields

/cd7r < limimf/cdwsn <liminfC., = Cp.
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On the strength of Lemma 5.8, the second assertion is a consequence. ]

The second approach is to show optimality of the limit intrinsically: we
show that any weak limit must be c-cyclically monotone, hence an opti-
mal transport. Under a mild integrability condition, this also implies that
lim._,9C: = Cy. In the remainder of this section, we specialize to P = u Q@ v.
The main result reads as follows.

Theorem 5.10. Let P = p® v and let ¢ be continuous with ¢ < ¢y @ ¢y for
some c1 € LY(u) and cg € L1 (v).1?

(a) We have lim._,oC. = Cp.

(b) If e, = 0 and lim, 7., = 7 weakly, then © € I (p,v) is an optimal
transport.

(c) If (OT) admits a unique optimal transport m, then lim. o7 = m,
weakly.

To prove the key part (b), we use the intrinsic characterization of 7.
by cyclical invariance. Recalling that (¢EOT) corresponds to a reference
measure dR o e~“/¢dP in the setting of Schrédinger bridges, Definition 2.6
translates as follows.

Definition 5.11. A coupling m € II(p, v) is called (¢, €)-cyclically invariant
if 7 ~ P and its density admits a version j—; : X XY — (0,00) such that

k dr 1 k k k dr
Hip xwyl —eXp(—[Z xl’yl ZC Ti, Yi+1 :|> | ld?(xiayi+l)
=1 1=

i=1 i=1
(5.8)
for all k € N and (z;,9;)%_; C X x Y, where yj.1 = v1.

We observe that the exponent contains the sums from the definition (5.2)
of c-cyclical monotonicity. If their difference is positive, the right-hand side
of (5.8) decays exponentially fast as ¢ — 0. In [1], that observation is
exploited to derive a large deviations principle for (m.) as ¢ — 0. Here, we
only use the fact that the right-hand side tends to zero.

Proposition 5.12. Let ¢ be continuous and let 7z be (c,€)-cyclically invari-
ant for e > 0. If e, — 0 and limnm,, = m weakly, then m € Il(p,v) is
c-cyclically monotone. In particular, ™ is an optimal transport as soon as
Cy < 0.

19The theorem remains valid if ¢ < ¢1 @e¢s is replaced by ¢ € L' (u®v); cf. Corollary 5.17
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The proof is based on the following lemma capturing the aforementioned
exponential decay.

Lemma 5.13. Let k > 2 and § > 0. Define

k k
Ak(d) = {(:’Uiayi)?:l € (X X Y)k : ZC ﬂ%yz ZC xlayz-‘rl } .

i=1 i=1
Then ¥ := [T, 7. (dxi, dy;) € P((X x Y)¥) satisfies
T (AR(6) < e forall > 0. (5.9)

Proof. Set Z = dn./dP. Using (5.8), we have for P*-a.e. (z;,y;)%_; € A that

H Z(zi,yi) = exp {—5_1 [ZC(%’, yi) — d_c(wi, yi+1)} } H Z (w4, Yiv1)
< e 1] Z(@i,yirn).

Let A := { (ziyyir1) )« (v, )b, € A}. Integrating over A with respect
to P* =[] P(dx;, dy;) = [] P(dz;, dy;y1) yields

mh(A) < e e rb(A) < e70F,
where we have used that 7¥ is a probability measure. O

Proof of Proposition 5.12. We show that spt 7 is a c-cyclically invariant set.
Suppose for contradiction that there are (z;,vy;) € sptm, 1 < i < k with
Yoic(@i,yi) > >, e(xi, yit1). By continuity of ¢ there exist 6 > 0 and open
neighborhoods U; 3 (z;,y;) such that Y, ¢(Z;,9:) > d+ >, ¢(Z;, Yiy1) for all
(%4, 7i) € U;. Moreover, m(U;) > 0 and hence liminf, ., (U;) > 0. On the
other hand, Uy X - -+ x Uy C A(6) implies 7% (Uy x - x Ug) = 0 by (5.9),
a contradiction. O

The following fact will be used to derive lim._,q Cc = Cy from the conver-
gence of optimizers; i.e., to derive (a) from (b) in Theorem 5.10.

Lemma 5.14. Let |c| < ¢1 Dy for some c; € L' (p) and ca € L*(v). Then ¢
is II(w, v)-uniformly integrable.

Proof. We may assume that ¢, c1,ce > 0. By the la Vallée-Poussin theorem
[2, Theorem 4.5.9, p.272|, 2(c; ® ¢3) € L'(u ® v) implies that there exists
a convex, increasing, superlinearly growing function ¢ : Ry — R, such
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that ¢(2(c; @ ¢2)) € L'(p ® v). Fubini’s theorem then shows that also
#(2c1) € LY (i) and ¢(2¢2) € L' (v). Let 7 € TI(u,v), then by convexity,

/¢(c) dr < /¢ <2CW'2962> dr < ;/¢(2c1) ® ¢(2c3) drr

_ ;/qs(zcl)dﬂ +/¢(2CQ)dy < 0.

Thus suprer(,) J ¢(c)dr < oo and now the converse direction of the la
Vallée—Poussin theorem yields the claim. O

Proof of Theorem 5.10. The assumption clearly implies C. < oco. As 7 is
(¢, e)-cyclically invariant by Corollary 2.9, (b) follows from Proposition 5.12.
In the light of Lemma 5.8 and Lemma 5.14, (b) implies (a) and (c). O

Remark 5.15. Uniqueness of the optimal transport is known in many im-
portant examples, for instance for quadratic cost c(z,y) = ||z — y||* on
R? x R? when pu (or v) is absolutely continuous (see [35]). It seems plau-
sible that lim._,o 7. exists even without this uniqueness; i.e., the entropic
regularization would select a particular optimal transport in the limit. We
have seen this in Theorem 5.5 where the minimal entropy optimal transport
m. = argming, ) H(-|P) is selected, but in general it is open how to
formalize an analogue if all optimal transports have infinite entropy. One
example where selection is known, is the 1-dimensional Monge problem [14].

5.4 Convergence of Potentials

Throughout this section, X, Y are Polish, P = u®v and ¢ € L'(P) is continu-
ous. By Section 4, the rescaled EOT potentials (@, 1:) exist, are integrable,
and solve the dual EOT problem. Our aim is the show the convergence of
e DYe to a dual solution pg @1y of the optimal transport problem. To state
a separate convergence of . and 1), it is clearly necessary to choose a nor-
malization. We use the symmetric convention p(p:) = v(1)), and then the
same will hold for the limit. Results for other normalizations, for instance
w(pe) = 0, are an immediate consequence.

Theorem 5.16. Let P = p®v and let ¢ € LY(P) be continuous. Let (pe, 1)
be the rescaled EOT potentials for e > 0.

(a) Given e, — 0, there is a subsequence (gx) such that ., converges in
LY(pn) and 9., converges in L(v).

(b) If lim, e, = ¢ p-a.s. and limy, ., = v-a.s. for e, — 0, then (@, 1)
are Kantorovich potentials and the convergence also holds in L'.
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In particular, if the Kantorovich potentials (po,v0) are a.s. unique, then
lim. . = @o in L'(p) and lim. . = g in L' (v). Moreover, if X,Y are
compact, L'-convergence can be strengthened to uniform convergence in all
assertions.

In many important examples, it is known that the Kantorovich potentials
are a.s. unique (e.g., [1, Appendix B|), and then Theorem 5.16 yields a clear-
cut result on the convergence of the potentials in L'. In the case of non-
uniqueness, the situation is similar as in the primal problem (Remark 5.15):
we have a compactness result and we may conjecture that a particular limit is
selected, but it seems that this is known only for discrete marginals (see [9]).

The main difficulty in Theorem 5.16 is to establish compactness in a suit-
able sense. We only detail the proof in the special case where X, Y are com-
pact, so that we can use the standard Arcela-Ascoli theorem (see also [24]).
For the general result, see [28].

Proof (Compact Case). When X, Y are compact, the continuous function ¢
is bounded and uniformly continuous. Lemma 4.9 and Lemma 4.11 (and
Remark 4.12) then show that ¢, 1. are bounded and uniformly continuous,
uniformly in € (after choosing suitable versions). By the Arcela—Ascoli the-
orem, (¢:)e>0 is relatively compact in the topology of uniform convergence,
and similarly for (¢):)s>0. This shows (a). Regarding (b), it also shows that
if lim,, ¢, = ¢ p-a.s. and lim, ¢, = 9 v-a.s., this convergence necessarily
uniform and the limits ¢, are continuous (again, after choosing suitable
versions). Let § > 0 and A := {¢ @1 > ¢+ 2§}. The uniform convergence
implies that for € > 0 small enough,

dme _ e o g/
dP -

hence P(A) > 0 would imply 7.(A) > 1 for € > 0 small. We conclude that
p® 1Y < ¢ P-as. But since ¢, 1, c are all continuous, this already implies
that @Y < ¢ on the support spt P = spt i X spt v. After possibly changing
, % on nullsets, we have that ¢ 1 < con X x Y.

It remains to show that ¢, ¥ are dual optimizers. Combining the uniform
convergence with the EOT duality (4.9) and Corollary 5.4, we have

w(e) +v(¥) = lim [u(p:) + v(¢e)] = lim Ce = Co.

In view of the optimal transport duality (5.3), this shows that ¢, are dual
optimizers and the proof is complete. O

on A,

Corollary 5.17. Let P = p® v and let ¢ € L'(P) be continuous. Then
lim€_>0 CE - CO.
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This follows from the L'-convergence in Theorem 5.16 via duality:

Co = p() +v(¥) = lim [u(pe,) + v(e,)] = lim Ce, .

We have cheated in this argument, though, as the proof of the L'-convergence
in [28] partially uses lim._,oC. = Cy. Specifically, [28] first shows the con-
vergence of the potentials in probability. Using the uniformly integrable
upper bound resulting from Lemma 4.9, this implies limsup,_,oC. < C,
which in view of C. > Cy is enough to conclude lim sup,_,,C: = Cy. In [28],
L'-convergence is then deduced by a Scheffé argument.

6 Sinkhorn’s Algorithm

Let (X, p) and (Y, v) be probability spaces. We fix R € P(X x Y) satisfying
R <« pp® v and write, as in Section 2.1,

dR

o—cl@y) —
d(p®@v)

(z, ).

Thus ¢ : X XY — (—o00,00] satisfies ¢ < oo p ® v-a.s. if and only if
R ~ p® v, and that is the case of principal interest to us. On the other
hand, some results hold in the more general setting without additional ef-
fort. Throughout this section, we assume that the Schrédinger problem is
finite; i.e., (i, v) # 0. In particular, the (unique) Schrédinger bridge
e € I, v) exists with H(m,|R) < oo.

In the dual perspective, our aim is to solve the Schrédinger equations

o(z) = —log/ W =e@Y) y(dy)  p-as., (SE1)
Y

Y(y) = log/ e?@)=e@y) (de)  v-as. (SE2)
X

We may start with some function g, say o := 0, and alternatingly solve
the two equations: for ¢ > 0,

(1) define v, as the solution of (SE2) with ¢ := ¢,
(2) define @441 as the solution (SE1) with ) := 1y,

and iterate. This is the basic idea of Sinkhorn’s algorithm. If the algorithm
reaches a fixed point, (@i, 1) = (pegr1,Uer1), then (@g,1¢) is a solution
of (SE1)—(SE2) and we have found the desired potentials. In most cases, it
will not reach a fixed point for finite ¢, but we shall prove convergence to a
fixed point under suitable conditions.
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To add further motivation beyond the general idea of alternatingly solv-
ing the two equations, consider the dual problem from Section 3 and its
objective function

G, ) = () + () — / e# AR 4 1.

Recalling the interpretation of the Schréodinger equations as Euler—Lagrange
equations for optimality (Remark 3.4), the algorithm can be seen as a coor-
dinate ascent scheme for a concave maximization problem: for ¢ > 0, iterate

(1) 1y := argmax G(¢, -),

(2) pr41 1= argmax G(-, ).

This implies the monotonicity of the scheme,

G(pt, ) < Gper1, ) < G(oer1, Yirt),

and in particular limy G(p¢, 1) exists. By the strict concavity of G, each
iteration will strictly increase the value G(¢¢,1¢), unless a fixed point has
been reached. Thus we may expect that G(pt, ) — G(p«, ¥x) as well as
ot — @« and Py — 1y, for some potentials (@x, 1y).

Algorithm 6.1 (Sinkhorn, Dual Formulation). Set ¢g := 0. For ¢ > 0,

Pi(y) == —log / ePt@=cl@y) 1y (dy),

X

prine) i= ~log | 0=l y(ay)
Y

We also define
dr(p,9) = e?*VdR = e**V d(p®v),
Top = (o, ), Tor—1:=7(pt, Y1), t=>0,
were ¥_1 := 0 and thus 7_1 = R.

The primal problem offers another perspective on Sinkhorn’s algorithm.
Starting with ¢, Step (1) corresponds to choosing ¥ = 1 such that the
measure

ePtoY—c d(p ®v)

has the required second marginal v. Then, the choice (2) for ¢ = ¢;41 corre-
sponds to “fitting” the first marginal of e¥®¥t=¢d(u ® 1) to be p. Of course,
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the second marginal may now be off again, and the iteration continues. This
explains why Sinkhorn’s algorithm is also known as iterative proportional
fitting procedure, or IPFP.

There are many choices fitting one marginal. Setting the above algorithm
aside for the moment, one natural choice for a primal algorithm is to minimize
entropy relative to the last iterate, starting with R. That is, we set m_1 := R
and iterate for ¢ > 0,

o = argmin H (- |mo_1), (6.1)
TI(x,v)

Tor+1 := argmin H (- |may), (6.2)
T (%)

where II(x,v) is the set of measures on X x Y with second marginal v (and
arbitrary first marginal), and II(u, %) is analogous. Next, we rewrite this im-
plicit algorithm in a more explicit form. Let us focus on the second step (6.2),
where given 7’ < pu ® v, the next iterate is
7= argmin H(-|7’). (6.3)
IT(p,%)
To determine the minimizer, we can disintegrate a generic w € II(ju, %) into

7 = u® K and compare with 7/ = ¢/ ® K’, where y is the first marginal
of /. Assuming that 7 < 7/, we have

H(xls') = Hlul') + [ H(KIK')d

The first term is independent of 7 € II(u, *), hence the minimum is attained
for K := K’ as that makes the second term vanish. For this choice of ,

H(m|n") = H(plp') (6.4)

as well as
dm dp dK du
/(ﬂf,y) = / 7= ’°
dm du' dK du

In conclusion, the iteration (6.1)—(6.2) can be stated explicitly as follows.

Algorithm 6.2 (Sinkhorn, Primal Formulation). Set 7_; := R. For t > 0,
define my € P(X x Y) via

dmot ) dv

(z,9)

dma1 _dp
dmay (x ).7 dpiag (x),

dmoi—1 dvas—1

where (¢, 1) denotes the marginal distributions of 7.
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Next, we observe that this coincides with the dual formulation given in
Algorithm 6.1. Indeed, the conditional den51ty (x y) of 7/ glven x is the

quotlent of the joint density e g ) and marglnal density f T u50) dv. With
7' := 7o defined as in Algorithm 6.1, this yields

dK’( - Pt (@)Y (y)—c(z,y) ewt@) c(z,y)
dv Y T T ee @t @y (dy) [ et @iy (dy)’

In the primal formulation, mo;11 was defined with the kernel K = K’ and its
marginal density is du/dp = 1, hence the joint density is

pi(y)—c(z,y)
e 1 ) L ) . |
dlp®v) du dv fe¢t(y)—c(1‘7y)y(dy)

or equivalently, the log-density is

~log / W=Dy (dy) + iy — ez, y).

The log-density implied by Algorithm 6. 1 is cpt+1( )+ wt( ) —¢(x,y), hence
the above matches the definition @41 (z — [e¥tW=c@v)y(dy) in Algo-
rithm 6.1. Similar arguments hold for the update from 2t — 1 to 2t, and as a
result, the two formulation of Sinkhorn’s algorithms are equivalent. Below,
we mostly use the dual formulation.

Remark 6.3. Sinkhorn’s iteration is also used in the context of the entropic
optimal transport problem (EOT) where the cost ¢ is not necessarily nor-
malized; Le., a := [ e “d(u® v) # 1. The following shows how our results
can be extended to this situation with minimal changes. Indeed, we can
introduce a normalized cost

¢:=c+loga

which satisfies [ e ¢d(p®@v) = 1; i.e.,, dR = e ¢ = d(p ® ) is a probability.
Denote by (¢, 1) the iterates of Algorithm 6.1 for cost ¢ and by (¢, TZJt)
the iterates for cost ¢. Then a simple induction shows that

0t =1, by = —loga,  t>0.

(This is analogous to Remark 4.3.) As e?*®¥s—¢d(u@v) = e?*®s—¢d(pov),
the induced measures 7, are the same for both iterations. By applying our
results to ¢, we can easily deduce the corresponding results for ¢. In fact,
most of the results below are stated in terms of differences such as ¢y — 9,
and hence the formulas hold in the unnormalized case without changes.
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6.1 Basic Properties and Marginal Convergence
Denoting by (¢, v¢) the marginal distributions of 7, we recall that
Hoty1 =,  va=v, t>0; (6.5)

that is, every other marginal is correct. One aim of this section is to show
that the “incorrect” marginals converge to the correct ones as t — co. We
first provide some basic properties.

Lemma 6.4. For allt > 0 andn > 0,
(i) ¢ € L' () and 4y € L' (v),
(11) H(mo|mor—1) = v(¥y — i—1) and H(mopq1|m2e) = p(@e1 — @1),

(iii) p(pn) = Y=g H(morpa|mar) and v(ihn) = Yoig H(mar|mar1); in par-
ticular, p(pyn) and v(2Py,) are nonnegative and increasing,

Proof. (ii) For ¢t > 0,

H(mot|mo—1) = /log di;zil dmoy = /(wt — 1) dmy = /Wt — 1) dv
(6.6)

where we have used (6.5) and the integrals are necessarily well-defined in
[0, 00]; in particular, (v — 1)~ € L*(v). Similarly,

H(maq1|ms) = /(%H — @) dp.

(i) Clearly ¢_1 and ¢q are integrable. Suppose that ;1 € L'(v) and
@1 € LY(p), we show by induction that vy € L'(v) and @111 € L'(p).
Indeed, (6.6) and ¢;_; € L'(v) imply (v;)~ € L'(v). On the other hand,
using H(mi|R) < oo, Lemma 1.4 (a) yields log(dma/dR)" = (o1 + ¢)T €
LY(7y). In view of 7, € II(pu,v) and the hypothesis that ¢, € L'(u), it
follows that (¢;)* € L'(v). We have shown 1; € L'(v), and the proof that
i1 € LY (p) is analogous.

(iii) Summing up (6.6) yields

> Hralr) = Y- [ =) dv = [ = ) dv = i)
t=0 t=0

Similarly, 1" H(m2r+1]m2t) = p(Pnt1)- O
*°TIn the case of an unnormalized cost ¢ (i.e., a := [e “d(u ® v) # 1), the result for
1 changes to v(i,) = —loga + Z?:o H (ma¢|m2¢—1) and hence v(¢n) > —log« instead

of v(¢n) > 0. See Remark 6.3.
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We can now state a key property for the convergence analysis.

Proposition 6.5. For alln > —1,

n

H(m,|mn) = H(m|R) = Y H(m|m_1). (6.7)
t=0

In particular, H(m,|m,) is decreasing in n.

Proof. Recalling m_1 = R, the case n = —1 is clear. Let n > 0. From
Lemma 6.4 (ii) we obtain Z?Zo H(mi|mi—1) = p(pn) + v(1n). On the other
hand, Lemma 1.4 (b) and H (7| R) < oo yield
H(m|R) — H(ms|mn) = E™ [log(dman/dR)] = E™ [on + ¢n]
= pleon) + v(¥n),

where 7, € II(u,v) and the integrability from Lemma 6.4 (i) were used for
the last equality. It follows that

2n
H(m.|R) = H(mu|man) + Y H(milme 1),
t=0
Similarly for 2n replaced by 2n + 1, showing the claim. O

As a consequence, we obtain that the marginals (u, 1) of m; converge to
the correct marginals (p, v).

Corollary 6.6. For allt > 1,
H (pe|p) + H(ve|v) < H(my|mi—1),
and the right-hand side is summable with

> H(m|m1) < H(m.|R) — H(mo|R) < H(m.|R).
t>1
In particular, H(uip) — 0 and H(v|v) — 0, and then also py — p and

vy — UV in variation.

Proof. If t > 2 is even, then p = p;—1 and v = 14 by (6.5), so that

H(pe|p) + H(ve|v) = H(pe|p—1) < H(me|me—1),

where the inequality is due the data processing inequality (Example 1.7).
Similarly for odd ¢ > 1, and the first inequality follows. For the second
inequality, note that (6.7) yields > ;2| H(m|m—1) < H(my|R) — H(mo|R)
due to m—; = R. The convergence in variation follows by Pinsker’s inequality
(Lemma 1.2). O
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The next lemma lists further properties of the Sinkhorn marginals.
Lemma 6.7. For allt > 0, we have

dpat — ePt—Ptt1 dvar—1 — e¥t—1—
du ’ dv

d .
72t = 1. In particular,

as well as d“dgi;jl =1 and
(M2t|,u = MQt(SOt 90t+1) = H(W2t|772t+1),
H(vor—1|v) = vor—1 (V-1 — ) = H(mor—1|m2),

) =

) =
H(plpzr) = plpir1 — wi) = H(mopp1|mar),
H(v|var—1) = v(r — Y1) = H(mat|mar—1),
) —
) —

H (poirolpat) = poer2(pr — Pir1),
H(vors1|var—1) = varg1 (Y1 — r).

H (pi2e+2|p
H(V2t+1 ‘V

Proof. We write the marginal density by integrating out the second marginal
from the joint density,

dpoy dmot _
— du) = pr(@)+Pe(y)—c(zy) (4
d ( ) /yd(,tL@l/)(x’y)V( y) /Ye V( ?J)

— ept(2) / eVt (v)—c(zy) v(dy) = et () g —pry1(z)
Y

where the last step used the definition of ;1. The proof for vo; 1 is anal-
ogous. While % =1 and % = 1 can be obtained in the same way, this
is also a restatement of (6.5).

The formulas for H (ug¢|pn) and H(v9i—1|v) are now immediate. It also
follows that

dp dpo
H (p|par) = /10ngQt dp = —/log . L = —p(er — oir1)

which is equal to H(mwas41|mo) by Lemma 6.4 (ii). Similarly for H (v|vai—1).
For the last pair of formulas, we use Lemma 1.4 (b) to see that

d
H (poiro|p) — H(p2ty2|por) = / log dL;t dporo = porr2(pr — Pre1),s

and similarly for vo1. ]
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Remark 6.8. The formula H(u|po:) = H(mat41|me:) in Lemma 6.7 was
already derived in (6.4). Taking it as a starting point gives a slightly different
way to understand the minimization property (6.3) of Sinkhorn’s projection:
the data processing inequality (Example 1.7) shows H (u|p2:) < H(m|ma:) for
any 7 € II(u, *), and as w41 attains this bound, we have

Tor41 = arg min H (m|ma).
mEll (%)

Remark 6.9. We have seen that H(u|p) — 0 and H(v4|v) — 0; cf. Corol-
lary 6.6. The reverse entropies also converge: H (p|p:) — 0 and H (v|vy) — 0.
Indeed, H (u|pat) = H(mory1|mor) — 0 by Lemma 6.7 and Corollary 6.6, and
of course H (p|p2i+1) = 0. Similarly for v;.

6.2 Rate for Marginal Convergence

While Corollary 6.6 shows that H(ug:|n) — 0, our next aim is to prove a
rate for this convergence (and also for H (p|ua:) — 0). The rate is stated in
Corollary 6.12 below; the key step is the monotonicity of H (uo|p). These
properties were obtained in [25|, where the Sinkhorn marginals are framed
as a Bregman gradient descent scheme and the properties are derived as
structural consequences. Below, we give a proof through on an entropy
calculation which is elementary but may lack the deeper explanation.

Proposition 6.10. Fort > 0, we have

H(paelp) > H(v|vagy1) > H(paeralp) > H(v|vaes) > ..

more precisely,

H(v|vor11) = H(parra|p) + H(moupo|mo) — H(poer2|por) = H(paeto|p),
H(v|vors1) = H(poe|p) — H(mor|morr2) < H (poe|p).

Similarly, H(plpee) > H(vopy1|v) > H(plporr2) > H(vagpslv) > ... for
t > 0. In particular, the sequences

{H (p2el i) yez0, - {H(plp2e)bezo, AHVIvai1) b0, {H (Var41[v) b0

are monotone decreasing.

Proof. The last two displays imply the other claims. Moreover, the two
inequalities therein are clear: the data processing inequality (Example 1.7)
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shows H (ma42|mar) > H(paet2|pat), and of course H (mwo|mary2) > 0. Hence,
it suffices to prove the equalities. On the one hand, Lemma 6.7 yields

H (mot|mot42) = /(SOt — Q41 + U — Yry1) dmy

= pat(pr — prt1) + v (Pr — rsa)
= H(pot|p) — H(v|vars1),

which is the second equality. On the other hand, Lemma 6.7 yields

H(mopq2|mo) = /(@H—l — ot + Vg1 — UYy) dmopyo

= por2(Qir1 — o1) + V(g1 — )
= H(poty2|p2t) — H(potyo|p) + H(v|vasy1),

which is the first equality.

The proof for H(p|per) > H(vour1|v) > H(p|p2it+2) is analogous, at
least for ¢ > 1. For ¢t = 0, while H(u|po) > H(v1|v) formally follows from
the data processing inequality and computing H(mi|m—1) — H(v1|v—1) =
H(u|po) — H(vi|v), it does not seem obvious that H(vi|lv—1) < oo. To
circumvent this, consider disintegrations m (dx, dy) = v1(dy)® K1 (y, dx) and
m_1(dz,dy) = v_1(dy) ® K_1(y,dz). Formally, H(mi|r_1) — H(v1|lv-1) =
J H(K1|K_1)dv1, but the right-hand side is meaningful even if H (m|7_1)
and H(vi|v_1) are both infinite. We have dK;/du = e¥18%0=¢/e¥0=¥1 and
dK_1/dp = epo®¥-17¢ /e¥-1=%0  vielding

0< /H(K1|K_1)du1 = /(901 — o) @ (Y1 — o) dmy
= pu(p1 — wo) — v1(vo — 1) = H(plpo) — H(v1|v)
as desired. ]

We recall the following facts about monotone series.

Lemma 6.11. Let (an)n>1 C [0,00) be decreasing and A =3, < a5 < 00.
Then
an, =o(1l/n) and an < A/n, n>1.

Proof. We have na, < > ;_jar < A and hence a, < A/n. Moreover,
given € > 0, there exists m such that Zz;ln ar < € for all n > m, thus
(n —m)ay, < e and then limsup,,_, ., na, < e+ limsup,,_, ., ma, = €. O
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Corollary 6.12 (Sublinear Rate for Marginals). We have
H(palp) = oft),  H(v|va—1) = o(t)
and, with A := H(m.|R) — H(mo|R),
H(pot|p) < AJt, H(v|vo—1) < A/t t>1.
Analogous results hold for H(vei—1|v) and H (p|poi—2).

Proof. For t > 0, recall that H (ug|p) < H(mwot|mei—1) by Corollary 6.6 and
H(v|vgi—1) = H(mot|me—1) by Lemma 6.7. As thl H(my|m—1) < A by
Corollary 6.6, we see that

D Hualw) <A, Y H(vlpa—1) < A.

>1 t>1
In view of the monotonicity stated in Proposition 6.10, Lemma 6.11 yields
the claim. O
Remark 6.13. In the spirit of Proposition 6.10, one can also check that

|l = potl| v, lv — vort1lrv, |1 — el v, t>0

are decreasing sequences. See |11, Lemmas 33, 34]|.

6.3 Strong Convergence

The convergence of Sinkhorn’s algorithm can be shown under certain condi-
tions on c¢. We will see in the proof of Theorem 6.15 below that convergence
(of primal and dual iterates, as well as the values) follows once uniform in-
tegrability of certain sequences is guaranteed. The simplest case would be
to assume that ¢ is bounded, which implies uniform bounds on ¢, 1, (see
Lemma 6.14 below). In Theorem 6.15, we use a uniform lower bound on ¢
and an exponential integrability condition; this gives uniform lower bounds
on ¢y, Yy and a suitable integrability of the positive parts.

Lemma 6.14. Let x € X and y € Y.*!
(i) Fort >0,

inf [c(z,y) — Ye(y)] < pra1() < /c(m,y) v(dy),

yeyY
in

inf [cle,y) — (@) < (o) < [ e(o.y) uldo)

#'For unnormalized ¢ with o := Je ¢d(p®v) > 1, the bounds in Lemma 6.14 need to
be adjusted by a constant; cf. Remark 6.3.
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(i) If ¢ is bounded, then fort >0,
—2llclloc < pe(@) < llefloo,  —2llefloc < Pi(y) < llelloo-

In particular, |pillso < 2lcloc and [ < 2.

(iii) If e’ € L' (u ® v) for some p > 0, then fort >0,

P 11y < 1eP ]l 21 () -

e Ly < M€l (usn),
(iv) If ¢ > ¢o € (—0,0), then fort>1,

oir(x) > co — log [|e¥ || 111y > co — log [l€°l| £ (uen)
Yi(y) > co — log|e”!||L1(ny = co — log |[€°] L1 (uew)-
Proof. We only detail the proofs for ;.

(i),(il) Recall that u(py) > 0 and v(1p;) > 0 by Lemma 6.4 (iii). Jensen’s
inequality and u(p;) > 0 yield

Pe(y) = —log / Pt @=e@) y(dz)
s/wmm+memms/mwm@wgww

Similarly, o¢(z) < [ e(z,y) v(dy) < ||c||oo, completing the proof of the upper
bounds. For the lower bound, we note that

wt(y) 2 —log/esulo:cex[@t(l“)C(a:,y)] M(dﬂ:)

= —sup [pe(@) — ez, 9)] = —llello = &7 loo > —2llellso,
T

here the upper bound of ¢; (resp. ¢o = 0 for t = 0) was used in the last step.
(iii) Using the upper bound in (i) and Jensen’s inequality,

/epwt dv < /QPIC(%y)#(dm)V(dy) < /epcd(,u ®v).
(iv) Using the definition of 1, and (iii) with p = 1,
e Vt(y) — /ewt(x)—C(w,y) p(dz) < e_COH€WtHL1(u) < e_COHeCHLl(/u@V)' ]

We can now show the convergence of Sinkhorn’s algorithm under an
exponential integrability of c.
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Theorem 6.15. Let ¢ be bounded from below and such that
/erC dlp®v) <oo for some r > 1. (6.8)

Then, for some Schridinger potentials @y, . and the Schrédinger bridge m,,

(i) or(x) = pu(x) and Pi(y) — Pi(y) for all (z,y) € X XY,
(ii) @1 — v in LP() and vy — vy in LP(v) for all p € [1,00),
(iii) H(m,|m) = 0 and 7; — m, in variation,
(iv) H(m|R) — H(m.|R).

Proof. Note that p @ v € Il (1, v), so that m, exists and H(m,|R) < oo.
In view of Lemma 6.14 (iii),(iv) and the la Vallée-Poussin theorem [2, The-
orem 4.5.9, p.272|,

(€)1, (pt)i>1, (eP77PH1p,)>1  are uniformly integrable in L*(p)

and similarly for ¢;. For later use, we also recall from Lemma 6.4 that
p(pt)e>0 is increasing, hence the limit m = lim; pu(¢p¢) exists.

By the Dunford—Pettis theorem [2, Theorem 4.7.18, p. 285|, after passing
to a subsequence, the uniformly integrable sequence e®* converges weakly in
L*(p) to some function ®; i.e., relative to the topology o (L' (), L>(u)). We
write & = e¥*. As e=“(¥) € L®(u) due to the lower bound of ¢, it follows
for fixed y € Y that

lim 1 (y) = —log lim [ e?*@e=¢@) (dx) = — log/e‘p*(m)_c(m’y) u(dr).
t—o00 t—o00

We write 1, (y) for the right-hand side, so that ¥, — 1, pointwise, and by
uniform integrability also e?* — ¥+ in L'(v). Noting that (e?¥*()=¢(®)),5
L'(v) is uniformly integrable for every x € X, we also have

tlirn or+1(x) = —log tlim W =e@y) 1 (dy) = — log/ew*(y)_c(m’y) v(dy)
—00 —00

and the right-hand side must coincide with ¢, p-a.s. Choosing a suitable
version of ¢y, we have ¢:(z) = @4 (x) for all x € X.

In brief, (@, 1) is a solution of the Schrédinger equations; cf. Corol-
lary 2.5. In view of the exponential integrability and uniform lower bounds,
it is clear that ¢; — @, in LP(u) for all p € [1,00), and similarly for ;. To
see that the original sequence (¢;) converges to ., we still need to argue that
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the potential ¢, does not depend on the subsequence chosen above. Indeed,
the potential is unique up to a constant (Theorem 2.1) and hence completely
determined by its mean. As noted in the beginning of the proof, the limit
m = limy u(py) = () exists along the original sequence, so that ¢, cannot
depend on the subsequence.

As (s, 14) is a solution of the Schrodinger equations, m(@x, ¥x) = Ty iS
the Schrodinger bridge. Clearly H (my|ma:) = p(os — @) + v(he — ) — 0,
and similarly for m;41. By Pinsker’s inequality (Lemma 1.2), this also yields
m — T, in variation. Finally, using Lemma 6.7,

H(m|R) — H(m|R) = pot(pr) — plps) + v(r) — v(ts)
= p(e? " o) — plps) + v (Pr) — v(1hs) = 0

due to ¢i(z) — pryr1(x) — 0 and the uniform integrability of e¥t~¥i+igp,.
Similarly for mos4 1. O

Remark 6.16. Condition (6.8) can be weakened to
/erfc(x’y) YY) ) (dx) < oo and /e’"fc(x’y)“(dx) v(dy) <oo  (6.9)

for some r > 1 (which is weaker due to Jensen’s inequality). The proof of
Theorem 6.15 remains unchanged except that we now use Lemma 6.14 (i)
instead of (iii) to obtain the uniform integrability of (e%t) and (e¥t).

Remark 6.17. [32] gives a different set of integrability conditions to de-
rive uniform integrability and hence convergence of Sinkhorn’s algorithm;
see Conditions (A1), (B1), (B2) in [32]. Those conditions are not directly
comparable to the ones above—mneither includes the other. Instead of ex-
ponential integrability, [32] assumes among several other properties that
i e~“@¥) y(dx) is uniformly bounded away from zero, which is quite gen-
eral if ¢ is bounded in the y variable but restrictive otherwise.

On a related note, we remark that (6.8) is still a fairly strong condition:
in the context of (¢EOT) where ¢ is replaced by c¢/e, it requires that ¢ has
an exponential moment of order larger than 1/e.

One can certainly think of other sets of conditions to prove a version
of Theorem 6.15. However, it is worth noting that the convergence of Al-
gorithm 6.1 is less general than the convergence of the marginals in Corol-
lary 6.6, which did not even require finiteness of c.

Example 6.18 (Divergence of Sinkhorn Iterates). As in Example 2.16, con-
sider X =Y = {0,1} with uniform marginals u, v while R is the uniform
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distribution on {(0,0),(0,1),(1,1)}, thus corresponding to a cost function
taking the value ¢(1,0) = co. As observed in Example 2.16, II(u, v) has a
unique element absolutely continuous wrt. R, the Schrédinger bridge

1
Ts = 5(5(0,0) +d01,1))-

We know from Corollary 6.6 that the Sinkhorn marginals (u,14) converge
to (u,v). From the finiteness of X x Y, it is clear that (m;) admits cluster
points. Any cluster point 7 must have the limit marginals (u,v) and satisfy
m < R, which already implies m = m, by the above. As a result, m; — 7, in
variation.

Next, consider the Sinkhorn iterates ¢, 1¢:. By construction, we have
oi(z)+Y(y) = log(dg]%t (z,y)) R-a.s., and the fact that mo; — 7, in variation

dmot dms g
a0 — ‘¢ R-a.s. More explicitly,

means that

P1(0) +6:(0) > log 5, 4u(0) + u(1) > —00, (1) + (1) > log S,

This implies that both ¢; and 1, diverge.

Sharp conditions for the convergence of (7,) in variation do not seem to
be known at present. The next result at least shows that if (m,) converges
in variation, then the limit is indeed the Schrodinger bridge m,.

Proposition 6.19. Let ¢ < co u®v-a.s., or equivalently R ~ u®v. Suppose
that a subsequence (my, ) of the Sinkhorn iterates of Algorithm 6.2 converges
in total variation. Then the limit is the Schrodinger bridge my. Moreover, if
ny = 2y, the iterates @y, , Py, of Algorithm 6.1 satisfy @, @ Vi, — @x D Yy
in u ® v-probability, where g, @ 1, is the (uniquely determined) sum of the
Schrédinger potentials. The analogue holds for ny = 2t — 1.

Proof. For simplicity, we denote the subsequence by (7). Let 7, — m in
variation. As m, < R for all n, it follows that my < R and, for n = 2t,

eftOvt — % — % =l in LYR).
Here F' is a measurable function with values in [—o0,00). As 7 is a prob-
ability, mo{ " > —oo} = 1 and hence R{F > —oo} > 0. After passing to
a subsequence, we have ¢; @ ¥y — F R-a.s. Recalling R ~ p ® v, Corol-
lary 2.12(b) then states that F' = ¢ @ 1 for some measurable functions
¢ : X = [-00,00) and 9 : Y — [—00,00), and now Theorem 2.1 (b) shows
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that mg = m.. Thus, convergence must hold along the original sequence ().
More precisely, Corollary 2.12 (b) and Theorem 2.1 (b) imply that

ePtOVe _y oDV iy LI(R),

where (px, 1) are the Schrodinger potentials (which are finite and unique
up to additive constant). This implies ¢; By — @i By in p® v-probability.
Similarly for ¢, instead of ;. O

In the discrete case where X and Y are finite sets, it is clear that (m,)
converges in variation after passing to a subsequence, simply because the
weights (7, (x,y)) form a bounded set in a finite-dimensional space. For
finite cost ¢, we can then apply Proposition 6.19 to deduce that the whole
sequence converges to m.. (As ¢ is even bounded, this is also clear from
Theorem 6.15.) But when XY are not discrete, compactness for the total
variation topology can be hard to establish. The next section offers an
alternate approach using weak convergence. The advantage of the weak
topology is that (relative) compactness is immediate.

6.4 Weak Convergence and the Link to Stability

In this section we frame the convergence of Sinkhorn’s algorithm as a more
general question, the stability of entropic optimal transport problems.

Given the cost ¢ and marginals p, v, we have seen that if there exists
a coupling with finite entropy wrt. R, there exists a unique Schrodinger
bridge m« = 7(u,v) € II(p,v). Or equivalently, if we do not enforce the
normalization for ¢, a unique solution 7, € II(u,v) of the entropic optimal
transport problem

Ci(p,v) = ﬂeliiri V)/cdﬂ + H(rlp@v). (6.10)

Consider sequences of marginals u, — p and v, — v, where the convergence
is in a sense to be chosen. Assuming suitable integrability, there are unique
solutions 7, € I(jt,, vy) of

Ci(pn,vn) = neHi(r;lLf ) )/Cdﬂ' + H(m|pn @ vp).

22As J e ¢d(pn ®vn) typically depends on n, using the formulation of entropic optimal
transport avoids introducing an additional constant depending on n, whence our preference
over the Schrodinger bridge formulation.
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It is then natural to ask whether m,, — 7, (in a suitable sense). In words, we
expect the solution to be stable wrt. the marginals. Similar questions can be
asked for the potentials and the values C;.

Several results on stability have been obtained in the recent literature |7,
12, 23, 16|; we detail and apply the one of [23]. We say that = € II(u,v)
is c-cyclically invariant Definition 5.11 holds with € = 1, or equivalently if
Definition 2.6 holds for dR x e~ “d(u®v). Under the condition Cq (i, v) < oo,
we have seen that the solution 7, of (6.10) is c-cyclically invariant and that
it is uniquely characterized by that property (Corollary 2.9). In [1, 23|, the
authors do not impose the condition C;(p,rv) < oo but work directly with
cyclical invariance. In that language, the question on stability of optimizers
becomes: if 7, € II(un,,vy) are c-cyclically invariant, does convergence of
the marginals imply convergence of m,, to a c-cyclically invariant coupling of
the limiting marginals?

The following is special case of [23, Theorem 1.4]. The general assump-
tions are that X,Y are Polish metric spaces and that ¢ : X x Y — R is con-
tinuous and bounded from below. To allow for the techniques used in [23],
the spaces X and X x Y are assumed to satisfy the assertion of Lebesgue’s
theorem on differentiation of measures:

Assumption 6.20. Given p, A € P(X) satisfying p < A, there exists Xg C X
of full A-measure such that

. p(Br(x))
= lim ————¢ X A1
flays=lim B0 e, (611)
defines a version of the Radon—Nikodym density dp/d\. The analogous prop-
erty is assumed on the space X x Y.

This holds in particular when X,Y are Euclidean spaces, the main exam-
ple of interest. The conclusion then reads as follows.

Theorem 6.21 (Weak Stability). For n > 1, let (pn,vn) € P(X) x P(Y)
and let m, € (un,vn) be c-cyclically invariant. Suppose that pu,,v, con-
verge weakly to some limits p,v. Then m, converges weakly to the unique
c-cyclically invariant coupling m, € II(u,v).

Weak convergence of (m,), at least along a subsequence, is clear by the
compactness stated in Lemma 5.7. The main insight in Theorem 6.21 is that
any limit 7 must be equivalent to y ® v and that one can pass to the limit
in the definition of c-cyclical invariance. We refer to [23] for the proof.

Let us now return to Sinkhorn’s algorithm. Here we start from marginals
u, v and the algorithm itself generates certain marginals p,, v,. These sat-
isfy pun, ~ p and v, ~ v (cf. Lemma 6.7); moreover, p, — 1 and v, — v in
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variation (Corollary 6.6), which of course implies weak convergence. Our ap-
proach is to see the iterates 7, as solutions to EOT problems with marginals
ln, Un, SO that the stability theorem can be turned into a convergence result
for the algorithm.

Indeed, writing ¢, for the Sinkhorn iterates as before, we have by
construction that

dm 2

— 2 @t ® v-a.s.
d(p ) 8

and similarly for mo;—1. This is not quite our standard form with the EOT
potentials, because g and v are not the marginals of mo;, but it can be
translated as follows.

Lemma 6.22. Let 7y, @, ¢ be the Sinkhorn iterates of Algorithm 6.1. Then

dm,

L R ® Vp-a.s.
d(ﬂn ® Vn) fin "

for n > 1, where

Pn = P, 1[}71 =y if n=2t,
Pn 1= Pty Yn = Yy if n=2t—1.

In particular, 7, € Uy, vy) is c-cyclically invariant for all n > 1.

Proof. Recalling from Lemma 6.7 the formulas for the marginals densities

and using
dmy, dr, dp®v)

d(pn @ vy) — d(p@v) d(p, @ vy)’

we see that

dmat — dmar  dp — POVt —Copti1—pt — ppr1®YPr—c
d(pot @ var)  d(p @ v) dpugt

and similarly for 2¢ — 1. The last conclusion follows from Lemma 2.7. 0

If C(n, vn) < 00, the c-cyclical invariance in Lemma 6.22 means that m,
is the minimizer. Depending on the assumptions on ¢, it may or may not be
clear that the Sinkhorn marginals satisfy C(up, ) < co. One convenience
of working with c-cyclical invariance is that finiteness is not important in the
first place.
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Theorem 6.23 (Weak Convergence of Sinkhorn). Let X,Y be Euclidean
spaces, or more generally Polish metric spaces satisfying Assumption 6.20.
Let ¢ be continuous and bounded from below, and let Cy(p,v) < oco. Then
the Sinkhorn iterates (my,) converge weakly to the optimizer m, € I(u,v)

of (6.10).

Proof. As py, — p and v, — v in variation by Corollary 6.6, Theorem 6.21
immediately tells us that m, — m9 € II(u, v) weakly for a c-cyclically invari-
ant coupling 7y, and as C1(p,v) < 0o, it follows that 7y is the optimizer 7,
(Corollary 2.9). O

A different application of stability to Sinkhorn’s algorithm can be found
in [16], where a rate of convergence in Wasserstein metric is provided.

6.5 Linear Convergence for Bounded Cost

In this section we give a quite different analysis of Sinkhorn’s algorithm.
Instead of using probabilistic properties, we study the dual problem as a
concave maximization and the algorithm as a coordinate ascent. One pur-
pose of this section is to highlight how strong convexity (a lower bound on
the second derivative) leads to linear convergence. This is particularly clear
in the analysis of [5] which we follow in this section. Other proofs of linear
convergence for bounded cost have been given through the Hilbert—Birkhoff
projective metric (see [8, 20]); we do not cover that approach here.

Let ¢ be bounded and measurable (we do not assume [ e “d(p®v) = 1).
For ¢ € L'(u), v € L'(v), consider the objective function of the dual EOT
problem,

Glo, ) = plp) + v(¥) — /e“@w‘cd(u ®v)+1. (6.12)

The following algorithm deviates slightly from the one considered above—
it centers the first potential—hence we distinguish the notation.

Algorithm 6.24 (Sinkhorn with Centering). Set ¢¢ := 0. For ¢t > 0,

di(y) == —log / e? (M =eley) 1y (d), (6.13)
X

Orr1(x) == — log/ VW) —c(zw) v(dy) + A, where (6.14)
Y

. /X log ( /Y P (v) =) u(dy)) u(dz). (6.15)
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Comparing with Algorithm 6.1, ¢; is updated like v, but @41 is cen-
tered: \; is chosen such that pu(@y41) = 0. While Algorithm 6.1 corresponds
to an unconstrained coordinate ascent, Algorithm 6.24 can be expressed as

Ui(y) = argmax G(@r, 1),  @u1(z) =  argmax  G(o, ).
PpeLl(v) EL!(1): pu(p)=0

This is again a coordinate ascent, but ;i1 is chosen in a smaller space
given by the centering constraint. These iterates are related to the ones in
Algorithm 6.1 as follows.

Lemma 6.25. Let (¢, Y) be the usual Sinkhorn iterates as defined in Al-
gorithm 6.1. Then p(pr) = —(Ao+ -+ + A\—1) and

@t =@t — pler), e =Y+ pleor)
for all t > 0. In particular, g; ® ¥y = o1 © Y and G(Pg,t) = Gy, Uy).
Proof. This readily follows by induction. O

As 1) is defined through the Schrédinger equation,
dm (P, ) = eP®Ye—c d(p ®v) has second marginal v, (6.16)

as in (6.5). Or we can argue through Lemma 6.25: 7(@s, ) = (¢, ¥t)
is as before, hence still has second marginal v. By contrast, the measure
T(@es1, ) = P19Vt =¢ d(;1 ® v) does not have first marginal y in general,
due to the centering constraint. It is not a probability (unless A\; = 0), and
we shall not use this measure below.

The main advantage of the centering is that it allows us the separate the
two coordinates as follows: for ¢ € L?(u) and ¢ € L*(v),

lo® "‘ﬁ”%m@u) = H@H%z(u) + |W”%2(V) it p(e)=0. (6.17)

Next, we check that the modified iterates are still bounded when c is
bounded (this could also be inferred from Lemma 6.14 via Lemma 6.25).

Lemma 6.26. For everyt > 0, we have

1Belloc < 2lclloo,  N1Ptlloo < Bllclloc-
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Proof. Using the definition (6.14) of ¢; and writing 1 := v;_1, we find that
for all z1,z9 € X,

Pr(w1) — @r(w2)
~ log / W) —e@29) (dy) — Tog / PO —cw19) ()

~ log / c(m19)=cle2 ) +D ) ~<@19) () — log / P =cle19) 1 ()

< log [esupyey le(a1 ) —e(w )| / D) —c(z1.9) ,,(dy)] ~log / W —e@19) 4 (dy)

= sup |C(IL‘1, y) - C(l’g,y)‘ < 2||CHC>C>
yeY

(This was the same calculation as in the proof of Lemma 4.11, and no par-
ticular property of 1) was used.) As u(@;) = 0, we must have sup,, @;(x) > 0
and inf, @;(z) < 0, hence the above implies ||¢t]|co < 2[/¢||oo. The defini-
tion (6.13) of ¥y now directly yields ||¥|lco < ||@tlloo + lIclloo < 3llclloo- O

The main result of this section reads as follows.

Theorem 6.27. Let ¢ be bounded and let (s, ¥x) be the unique EOT po-
tentials with (@«) = 0. The iterates (@, V¥i)i>0 of Algorithm 6.24 satisfy

G(Bu i) = G(@1r) < B'(G(Besths) — G(Po,¥0)),  (6.18)
|@x — @tH%?(u) + (|9 — ¢t”%2(,,) < BoB'(G(@x, ¥s) — G(@o,%0)),  (6.19)
where B :=1— e~ 24llelle (0,1) and By := 2¢ebllellos
Theorem 6.27 carries over to the uncentered Sinkhorn algorithm.

Corollary 6.28. Let ¢ be bounded and (4, 1¢)e>0 the iterates of Algorithm 6.1.
Let (s, 14) be the unique EOT potentials with u(ps.) = limy pu(pr). Then

G (s, s) — Glpr, Y1) < B (Glps, V) — G0, v0)), (6.20)
s = el T2y + 10e = illT2) < BoB (G s, vs) — G0, ¢0)),  (6.21)

where B :=1— e~ 24llel~ ¢ (0,1) and By = 2¢bllclloo

Proof. As G(@y,91) = G(p¢,10;) by Lemma 6.25, the convergence (6.20) is
immediate from (6.18). Let oy = v(psx — ¢¢) > 0 and By = v(¢s — ¢) > 0,
where the sign is due to Lemma 6.4 (iii). Hence, ¥; := 1, — ¢y — By is
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centered, and we recall that ¢, — @, is centered as well. Using Lemma 6.25
as well as (6.17) with a centered random variable and a constant,

[0 = @tllZag + e — Gell2agy = 152 — @1+ aulZag + 190 + Bulliag,
= [@x = @l 72 + @ + 19ell72(,) + 57
< 1@s = el Fagy + 1Well 2, + (e + Br)°
= P = Bl T2 + W + @t + Bill72 ()
= || — @H%Q(u) + [l — YZtH%%j)-
Therefore, (6.21) follows from (6.19) O

Remark 6.29. As the iterates are uniformly bounded by Lemma 6.26, the
linear convergences (6.19), (6.21) in L? already imply the corresponding
linear convergences in LP for any p € [1,00).

While the convergence in Theorem 6.27 and Corollary 6.28 is linear, one
can observe that the constants [, 5y may be very close to one and very
large, respectively, especially in the context of (¢EOT) where ¢ is replaced
by ¢/e. There are other techniques to show linear convergence, but they
seem to share the issue of yielding poor constants, contrasting with the fast
convergence of Sinkhorn’s algorithm typically seen in computational practice.

6.5.1 Proof of Theorem 6.27

The basic idea is to use the strong convexity of the exponential function on
an interval [—a, 00),

el —et > (l)—cz)«f,"l4—67|l)—cz|2 for a,be [—a,00). (6.22)
Lemma 6.30. Consider o, € L?(u) and 1,9’ € L*(v), and define

NG, V) (z) e? @ W) =e@y) 1 (dy),

1—

—

0:G(¢' 1) (y) = L= [ &0 -cle) ),
X

Ifo®dYy—c>—aand ¢ &Y' —c> —a for some a € R, then
G(¢', ) = Glp,Y) = /)(31G(<P'7¢')($) [¢'(2) — o(@)] p(dz)
+ [ BG( )W) W) - ()] vldy)
Y
+ Sl =) & (0 = 1200,
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Proof. We use (6.22) to obtain the inequality in
G(@/v ¢/) - G(907 1/])

— (' = ) =)+ [ T (s )
> (' — ) + v — ) + /(90 &Y —¢ &Y)e? W d(uv)
+ e;/|¢®¢—so’@w’l2d(u®7/)
:L&qummwm@—mmmwm
+/@qumwwmw—w@www
Y
+ 50 =) @ (0 = ) e 0
Lemma 6.31. With o := e Sl¢ll  we have
G(Prr1, Ver1) — G(r, Pr) > % <||95t+1 - @tH%%u) + b1 — 1/;t||%2(u)> :

Proof. We write the left-hand side as

(G(@H,@tﬂ) — G(@t+17@t)) + (G(95t+1,1zt) — G(@tﬂ;t))

and estimate separately these two steps of the algorithm. For the first part,
Lemma 6.30 with o = 6|c|| yields

G(Pri1, Yr+1) — G(Pry1, 1)
> [ 361, b)) [ (v) = ) ) + 51— G B
Y

Here the integral vanishes as the second marginal of 7o 9 is v; cf. (6.16):
02G(Pes1, o) (y) v(dy) = v(dy) — /X P IV )=e) 1 dru(dy)
= vldy) — [ mosa(da.dy) = v(dy) = v(dy) = 0. (6.2)
For the second part, Lemma 6.30 yields

G(Pry1,9t) — G(@r, )

> /XalG(SatJrlﬂEt)(x) [Pr+1(2) — @r(2)] pldx) + %H@t — @r41l72)-
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Here the integral vanishes for a different reason: the definition (6.14) of @41
states that [y, eVt W) =c@y) y(dy) = e=Pr+1(@)+e; thus

NG (Pri1, ) (x) = 1 — P11 () / eV W=y y(dy) = 1 — e
Y

is deterministic and the centering p(@i+1) = p(@r) = 0 implies
[ 016,50 @) [ (@) = ()] )

= (1) [ [pualo) — p)] ude) = 0. (6:20
Combining the estimates for the two parts completes the proof. O

Proof of Theorem 6.27. Recall the bounds for @;,1); from Lemma 6.26 and
note that @, ), satisfy the same bounds (either by following the proof of
Lemma 6.26 or by an application of Lemma 6.14). We can then apply
Lemma 6.30 with a = 6/|c||c to obtain

G (B, Pr) — (@, ) > /X NP1, D) () [P1(w) — Bal)] ()
+ /Y OaG(1, ) (v) [ () — ()] v(dy)
+ 2 (12t = @eliZag + 19 = BeliZagy) - (6:25)

where ¢ := e~ = e 6l and (6.17) was used in the last line. For the
second integral, we have

/Y G0, 1) (y) [t () — ()] w(dy) = 0 (6.26)

as in (6.23). To estimate the first integral, we first note that as in (6.24),

/X O1G (G181 (@) [21(x) — o) p(dx) = 0.
Hence

/X O0G (@1, ) (@) [p) — B ()] ()
- /X 01G (@0, ) (2) — G (Brr, Te) (@) [e() — @ ()] pi(dr)

1 s o o
> _%HalG((ptv Pr) — 81G((Pt+1:wt)||L2(M) - §Hg0t — 90*”122(#) (6.27)
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where the inequality follows from Holder’s and Young’s inequality: apply
1 1/2 1 2 912
[ otz =gl P Wl = ~ o0 l9lBaq) — 5 1bI3zq,

to g(x) := 01G(@¢, i) (x) — O1G (@1, %¢)(x) and h(z) := @4(x) — @« (z). We
use (6.27) and (6.26) in (6.25) to find

_ - _ 7 1 _ 7 _ -
G(Ps, Us) = G(@1,91) < %H&G(@tawt) — G(Ber1, ¥0) |72,y (6:28)
Suppressing the argument for brevity,
101G (@1, e) () — 1 G (Prr1,1r) (2)] < / ‘6@“@%_6 — Pt v(dy)
\4
< efliell /Y |Pr11 ® e — @t ® Y| v(dy)

— 2 1orn(®) - @)

where the second inequality used Lemma 6.26 and the Lipschitz continuity
of the exponential: e’ — 4| < eM|b — a for a,b < M. As a result,

_ - _ — L _ _
101G (e, 9) — DG (Per1, ) I72,) < e = il Z2 -
In view of (6.28), we conclude that
_ - _ - 1, _ _
G(Pss i) — G(&1, Y1) < T‘:),H@tﬂ - %H%Q(u)'
Now using Lemma 6.31 on the right-hand side yields
_ _ - 1 _ = _ -
G (P, V) — G(Pr, Yt) < oy (G(@ry1,Yhi11) — G(@r, Uy)) -
Writing Ay = G(@s, V) — G(@t,1t), this can be expressed as
1
A < ;(At — Agy1)

or A1 < (1—0H)Ay < -+ < (1 — o)A, which was the first claim of
the theorem.

As (@x,1x) solve the Schrédinger equations, we can follow the proof of
Lemma 6.31 to obtain

- N T -
G(@w,thi) = Gloe, ) 2 5 (H@* — @tll72(u + 19s — wzﬁ”%?@))

and thus H@*—@tﬂig(u)—kﬂqﬁ*—zﬁtH%%/) < 2. The second claim follows. [
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