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Abstract

This text develops mathematical foundations for entropic optimal
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Introduction

Applications of optimal transport are thriving in areas such as machine learn-
ing, statistics, economics or image processing. Regularization plays a key role
in enabling efficient algorithms with provable convergence (see [29] for a re-
cent monograph with numerous references). Entropic regularization is the
most popular choice as it allows for Sinkhorn’s algorithm (also called itera-
tive proportional fitting procedure, IPFP) that can be implemented at large
scale and is analytically tractable. The entropically regularized transport
problem may be formulated as

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx, dy) + εH(π|µ⊗ ν). (1)

Here Π(µ, ν) is the set of couplings of the given marginal probability measures
µ, ν on spaces X,Y. In the first term, c : X×Y → R is the cost function; the
most important example is quadratic cost c(x, y) = ∥x− y∥2 on Rd×Rd. In
the penalization term, H( · |µ⊗ ν) denotes the relative entropy with respect
to the product measure µ ⊗ ν and ε > 0 is the regularization parameter.
The basic idea is to solve this “entropic” optimal transport problem for small
ε > 0 to obtain an approximation of the (unregularized) optimal transport
problem that corresponds to ε = 0.

The problem (1) is also of its own interest; i.e., without letting ε → 0.
On the one hand, applied researchers have started to exploit numerous bene-
fits resulting from regularization (such as smoothness, statistical properties,
etc.), so that the regularization is sometimes seen as an advantage rather
than an approximation error (e.g., [21, 30]). On the other hand, entropic
optimal transport can be seen as a special case of the (static) Schrödinger
bridge problem that has a long history in physics. Indeed, (1) can be trans-
lated into an equivalent static Schrödinger bridge problem

inf
π∈Π(µ,ν)

H(π|R) (2)

by introducing the auxiliary reference measure R with

dR ∝ e−c/εd(µ⊗ ν). (3)

We do not discuss Schrödinger’s original dynamic problem in this text but
refer the interested reader to the surveys [17, 26].

The convex minimization (2) falls into the class of entropy minimization
problems of the general form

inf
Q∈Q

H(Q|R)
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with a convex set Q. Following [10], such problems admit a simple and ele-
gant general theory which we introduce in Section 1: existence and unique-
ness of a minimizer, characterization by a first-order condition, and other
properties. In Section 2 we apply this theory to the Schrödinger bridge
problem (2) where Q is the set of couplings and work out the corresponding
characterization—the optimal density is given by so-called Schödinger poten-
tials; roughly speaking, these are the Lagrange multipliers for the marginal
constraints. The potentials can be characterized as the solution of a sys-
tem of two equations, the so-called Schrödinger system. We focus on the
case (3) of interest to us, where R is equivalent to µ ⊗ ν and moreover of-
ten c ∈ L1(µ⊗ν). This allows us to achieve fairly general results while avoid-
ing some of the difficulties known in the theory of more general Schrödinger
bridges (see [3, 4, 18, 33, 34], among others). The potentials can also be
seen as the solution to a dual problem in the sense of convex analysis; this
is detailed in Section 3. Section 4 translates the results from Schrödinger
bridges to entropic optimal transport via (3) and adds another basic obser-
vation: the potentials inherit regularity from the cost function c. Indeed,
the Schrödinger system can be seen as a conjugacy relation reminiscent of
the notion of c-convexity in optimal transport theory and allows for various
types of a priori estimates. Section 5 studies the convergence of entropic
optimal transport (1) to (standard) optimal transport as the regularization
parameter ε → 0. Specifically, we are interested in the convergence of the
optimal value (1), the optimal couplings and the Schrödinger potentials. We
conclude with Section 6 on Sinkhorn’s algorithm. Here we first derive the
convergence of the marginal distributions and a general bound for their con-
vergence rate, then continue with select results on the convergence of the
couplings and potentials. While the convergence properties are reasonably
well understood for bounded cost functions, the unbounded case is only par-
tially understood.

1 Entropy

Consider a measurable space (Ω,F) and denote by P(Ω) its collection of
probability measures. In what follows, whenever a probability named R
is specified, E[·] = ER[·] =

∫
· dR denotes the corresponding expectation,

whereas other measures are indicated explicitly.

Definition 1.1. Given Q,R ∈ P(Ω), the entropy of Q relative to R is

H(Q|R) =

{
EQ[log dQ

dR ], Q≪ R,

∞, Q ̸≪ R.
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Relative entropy is also called Kullback–Leibler divergence. If Q ≪ R,
we can write

H(Q|R) = E[h(dQ/dR)], h(z) := z log z

as an integral under the reference measure R. Here and below, the convention
0× (±∞) := 0 is used. Noting that h : [0,∞] → [−e−1,∞] is strictly convex
and using Jensen’s inequality,

Q 7→ H(Q|R) is nonnegative and convex,

and strictly convex on the set where it is finite. Clearly H(Q|R) = 0 if and
only if Q = R.

1.1 Basic Properties

We define the total variation distance between P,Q ∈ P(Ω) as

∥P −Q∥TV :=

∫ ∣∣∣∣dPdR − dQ

dR

∣∣∣∣ dR
for an arbitrary measure R≫ P,Q; that is, the L1-distance of their densities.
Two other representations are

∥P −Q∥TV = sup
|ϕ|≤1 mbl.

∫
ϕd(P −Q) = 2 sup

A⊂Ω mbl.

(
P (A)−Q(A)

)
.

(An equally popular definition is to divide the right-hand side by 2, to nor-
malize ∥P −Q∥TV ≤ 1.)

Lemma 1.2 (Pinsker’s Inequality). The total variation distance of Q,R ∈
P(Ω) satisfies

∥Q−R∥TV ≤
√

2H(Q|R).

Proof. We may assume that H(Q|R) < ∞. We have 3(x − 1)2 ≤ f(x)g(x)
for f(x) = 4 + 2x and g(x) = x log x − x + 1, or equivalently

√
3|x − 1| ≤

f(x)1/2g(x)1/2. Denoting Z = dQ/dR, this yields

3∥Q−R∥2TV = E[
√
3|Z − 1|]2 ≤ E[f(Z)1/2g(Z)1/2]2

≤ E[f(Z)]E[g(Z)] = (4 + 2E[Z])E[Z logZ] = 6H(Q|R),

where Hölder’s inequality was used to pass to the second line.
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When Ω is Polish (i.e., a completely metrizable topological space), we al-
ways assume that F is the Borel σ-field and endow P(Ω) with the associated
weak convergence topology (in the probabilistic sense): Qn → Q weakly
means that EQn [f ] → EQ[f ] for all f ∈ Cb(Ω), where Cb(Ω) denotes the
space of bounded continuous functions.

Lemma 1.3. Given Q,R ∈ P(Ω), we have the variational representations

H(Q|R) = sup
ϕ: Ω→R bdd. mbl.

(
EQ[ϕ]− logER[eϕ]

)
(1.1)

= sup
ϕ: Ω→R mbl., ER[eϕ]<∞

(
EQ[ϕ]− logER[eϕ]

)
. (1.2)

In particular, the function (Q,R) 7→ H(Q|R) is jointly convex and jointly
lower semicontinuous wrt. convergence in variation. If Ω is Polish, this also
holds wrt. weak convergence.

Proof. Fix Q ≪ R. Consider 0 < ψ ∈ L1(R) and define dR′ = α−1ψ dR,
where α := ER[ψ] > 0 is the normalizing constant. Then dQ

dR = dQ
dR′α−1ψ

and hence

H(Q|R) = H(Q|R′) + EQ[logψ]− logα ≥ EQ[logψ]− logER[ψ].

This shows in particular that

H(Q|R) ≥ sup
ψ

(
EQ[logψ]− logER[ψ]

)
(1.3)

where the supremum is taken over functions ψ > 0 that are bounded and
bounded away from zero. Consider ψ0 := dQ/dR ∈ L1(R). Then ψn :=
(1/n) ∨ ψ0 ∧ n is such a function and dominated convergence yields

EQ[logψn]− logER[ψn] → EQ[logψ0]− logER[ψ0] = H(Q|R),

showing that equality holds in (1.3). Writing ϕ = logψ, we have (1.1). Note
that the set over which the supremum is taken no longer depends on Q
and R, and that (1.1) also holds when Q ̸≪ R. Moreover, the function
(Q,R) 7→ (EQ[ϕ] − logER[eϕ]) is convex and continuous wrt. convergence
in variation.1 It follows that the supremum H(Q|R) is convex and lower
semicontinuous as claimed.

When Ω is a metric space, Cb(Ω) is dense in L1(µ) for any Borel mea-
sure µ. Hence the supremum in (1.1) can be further restricted to continu-
ous ϕ, and then the weak lower semicontinuity follows in the same way.

1As the function ϕ is fixed, this also holds under a significantly weaker convergence:
we could weaken “convergence in variation” to “set-wise convergence” in Lemma 1.3.
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Finally, we show (1.2). Here “≤” is trivial. For the proof of “≥” we may
assume that H(Q|R) < ∞ and hence Q ≪ R, but in that case we may
use (1.3) with 0 < ψ := eϕ ∈ L1(R).

We observe that (1.2) implies a way to infer integrability under Q from
exponential integrability under R: given a real function φ and β > 0 with
eβφ ∈ L1(R),

EQ[φ] ≤ 1

β

(
logER[eβϕ] +H(Q|R)

)
(1.4)

by using ϕ := βφ in (1.2).
For the remainder of the section, we fix the reference R ∈ P(Ω). More-

over, x+ := max{x, 0} and x− := max{−x, 0} denote the positive and neg-
ative parts of x.

Lemma 1.4. Let Q,Q′ ∈ P(Ω) and Q′ ≪ R.

(a) If H(Q|R) <∞, then (log dQ′

dR )+ ∈ L1(Q) and EQ[log dQ′

dR ] ≤ H(Q|R).

(b) If either H(Q|R) <∞ or H(Q|Q′) <∞, then

H(Q|R)−H(Q|Q′) = EQ[log dQ′

dR ].

Proof. (a) Let H(Q|R) < ∞, then in particular Q ≪ R. Consider the
Lebesgue decomposition Q′ = Q′

1 + Q′
2 into Q′

1 ≪ Q and Q′
2⊥Q. Using

the inequality log x ≤ x − 1 with x = z′/z for z′ ≥ 0 and z > 0 yields
log z′ ≤ log z+ z′/z− 1. Evaluating this at z′ = dQ′

1
dR and z = dQ

dR then shows

Q-a.s., log dQ′

dR = log
dQ′

1
dR ≤ log dQ

dR +
dQ′

1
dR /

dQ
dR − 1 = log dQ

dR +
dQ′

1
dQ − 1.

It follows that (log dQ′

dR )+ ∈ L1(Q) and

EQ[log dQ′

dR ] ≤ H(Q|R) +Q′
1(Ω)− 1 ≤ H(Q|R).

(b) Case 1: H(Q|Q′) <∞. Then log dQ
dQ′ ∈ L1(Q), justifying (∗) in

H(Q|R) = EQ[log dQ
dR ] = EQ[log( dQdQ′

dQ′

dR )] = EQ[log( dQdQ′ ) + log(dQ
′

dR )]

(∗)
= EQ[log dQ

dQ′ ] + EQ[log dQ′

dR ] = H(Q|Q′) + EQ[log dQ′

dR ]. (1.5)

Case 2: H(Q|Q′) = ∞. Then H(Q|R) < ∞ and hence (log dQ′

dR )+ ∈
L1(Q) by (a), so that EQ[log dQ′

dR ] is well-defined. We need to show that
EQ[log dQ′

dR ] = −∞, or equivalently that EQ[(log dQ′

dR )−] = ∞.
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Case (i): Q ≪ Q′. Suppose for contradiction that (log dQ′

dR )− ∈ L1(Q).
Then log dQ′

dR ∈ L1(Q) and (∗) in (1.5) is again justified. Now (1.5) implies
H(Q|R) = ∞, a contradiction.

Case (ii): Q ̸≪ Q′. Then Q{dQ
′

dR = 0} > 0 and thus EQ[(log dQ′

dR )−] = ∞
as desired.

Lemma 1.5. Let Q,Q′ ∈ P(Ω) satisfy Q≪ Q′ ≪ R. Then∥∥∥∥log dQ′

dR
− log

dQ

dR

∥∥∥∥
L1(Q)

≤
√

8H(Q|Q′) +H(Q|Q′).

Proof. Let Z ′ = dQ′/dR and Z = dQ/dR. Then

EQ| logZ ′ − logZ| = EQ
∣∣∣∣ log Z ′

Z

∣∣∣∣ = 2EQ
[
log+

Z ′

Z

]
− EQ

[
log

Z ′

Z

]
= 2EQ

[
log+

Z ′

Z

]
+H(Q|Q′).

In view of the elementary inequality log+ x ≤ |x− 1|,

EQ
[
log+

Z ′

Z

]
≤ EQ

∣∣∣∣Z ′

Z
− 1

∣∣∣∣ = ER|Z ′ − Z| = ∥Q′ −Q∥TV .

Combining this with the above, we find that

EQ| logZ ′ − logZ| ≤ 2∥Q′ −Q∥TV +H(Q|Q′).

It remains to apply Pinsker’s inequality ∥Q′ − Q∥TV ≤
√

2H(Q|Q′) from
Lemma 1.2.

The next inequality, sometimes called data processing inequality or con-
traction of relative entropy, expresses the idea that transforming data does
not increase the amount of information contained in it, or more precisely,
increase the ability to distinguish between two probability distributions.

Lemma 1.6 (Data Processing). Let P,Q ∈ P(Ω) and K : Ω → P(Ω′) a
kernel.2 Let P ′ ∈ P(Ω′) be the second marginal of P ⊗K ∈ P(Ω × Ω′) and
similarly Q′ for Q. Then

H(P ′|Q′) ≤ H(P |Q).

2Throughout this text, kernel stands for Markov kernel.
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Proof. We may assume that P ≪ Q. For any kernels K1 ≪ K2 : Ω → P(Ω′),

d(P ⊗K1)

d(Q⊗K2)
(ω, ω′) =

dP

dQ
(ω)

dK1(ω)

dK2(ω)
(ω′) Q⊗K2-a.s. (1.6)

In particular, d(P⊗K)
d(Q⊗K)(ω, ω

′) = dP
dQ(ω) and thus the definition of H implies

H(P |Q) = H(P ⊗K|Q⊗K).

It remains to show that H(P ⊗K|Q⊗K) ≥ H(P ′|Q′).
1. Proof via Jensen’s Inequality. Jensen’s inequality for h(x) = x log x

and (1.6) and yield

H(P ⊗K1|Q⊗K2) =

∫∫
h

(
dP

dQ
(ω)

dK1(ω)

dK2(ω)
(ω′)

)
K2(ω, dω

′)Q(dω)

≥
∫
h

(
dP

dQ
(ω)

)
Q(dω) = H(P |Q). (1.7)

Denote by P ′ ⊗ K ′
1 the “reverse” disintegration of P ⊗ K from the second

marginal to the first, meaning that K ′
1 : Ω′ → P(Ω) is the conditional

distribution of the first marginal given the second (which we tacitly assume
to exist). Similarly, Q ⊗ K = Q′ ⊗ K ′

2. Applying (1.7) to P ′ ⊗ K ′
1 and

Q′ ⊗K ′
2,

H(P ⊗K|Q⊗K) = H(P ′ ⊗K ′
1|Q′ ⊗K ′

2) ≥ H(P ′|Q′).

The only drawback of this (standard) argument is that existence of disinte-
grations is a nontrivial issue that requires some assumptions in the proba-
bility space. The following is less intuitive but more elementary.

2. Proof via Variational Representation. The definition of P ′ means that∫
Ω′
ψ(ω′)P ′(dω′) =

∫
Ω×Ω′

ψ(ω′)P ⊗K(dω, dω′)

for any bounded measurable function ψ : Ω′ → R, where on the right-hand
side we see ψ as a special case of a function ϕ : Ω × Ω′ → R that depends
only on one variable, ψ(ω′) = ϕ(ω, ω′). We use this for both P ′, ψ and Q′, eψ

in the variational representation (1.1):

H(P ⊗K|Q⊗K) = sup
ϕ: Ω×Ω′→R bdd. mbl.

(
EP⊗K [ϕ]− logEQ⊗K [eϕ]

)
≥ sup

ψ: Ω′→R bdd. mbl.

(
EP⊗K [ψ]− logEQ⊗K [eψ]

)
= sup

ψ: Ω′→R bdd. mbl.

(
EP

′
[ψ]− logEQ

′
[eψ]

)
= H(P ′|Q′).
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One special case of Lemma 1.6 occurs when the kernel is deterministic:
given a measurable map T : Ω → Ω′, we can consider the kernel K(ω, dω′) =
δT (ω)(dω

′). Then P ′ is sometimes called the push-forward of P under T and
denoted T#P (or T∗P ), especially in analysis. (In probabilistic terms, T#P is
the law of the random variable T under P ). In this case, the data processing
inequality reads

H
(
T#P

∣∣T#Q) ≤ H(P |Q). (1.8)

Example 1.7. If P,Q are probabilities on a product space X×Y and P ′, Q′

are their marginal distributions on X, then H(P ′|Q′) ≤ H(P |Q). To see this,
we use the deterministic kernel (x, y) 7→ δx in Lemma 1.6, where Ω = X× Y
and Ω′ = X. Or equivalently, we take T in (1.8) to be the projection
(x, y) 7→ x.

1.2 Minimizing Entropy

The following compactness property of sets with bounded entropy is due to
the superlinear growth of h(x) = x log x.

Lemma 1.8. Let (Qn)n≥1 satisfy supnH(Qn|R) <∞. Then there are con-
vex combinations Q′

n ∈ conv{Qn, Qn+1, . . . } that converge in variation.

Proof. Let Zn := dQn/dR. As E[h(Zn)] is bounded and h has superlinear
growth, the la Vallée–Poussin theorem [2, Theorem 4.5.9, p. 272] shows that
(Zn)n≥1 is uniformly integrable. By the Dunford–Pettis theorem [2, Theo-
rem 4.7.18, p. 285] this is equivalent to weak precompactness in L1(R) and
(Zn)n≥1 has a subsequence that converges weakly in L1(R)—i.e., relative to
the topology σ(L1(R), L∞(R)).3 Mazur’s lemma [31, Theorem 3.13, p. 67]
then yields convex combinations Z ′

n ∈ conv{Zn, Zn+1, . . . } that converge
(strongly) in L1(R), meaning that the corresponding convex combinations
Q′
n ∈ conv{Qn, Qn+1, . . . } converge in variation.

The compactness property in Lemma 1.8 shows that for (Qn) such that
limnH(Qn|R) exists, suitable convex combinations Q′

n converge in total vari-
ation, but it is silent about the original sequence. We may note that if
Qn → Q in variation and limH(Qn|R) = H(Q|R) =: a, then necessarily
limH(Q′

n|R) = a whenever Q′
n ∈ conv{Qn, Qn+1, . . . }. Next, we show by a

geometric argument that this equality of limits is sufficient for convergence
of the original sequence.

3In fact, this is another noteworthy compactness property of (Qn)n≥1: there is a sub-
sequence that converges set-wise.
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Lemma 1.9. Let Qn ∈ P(Ω). Suppose that limnH(Qn|R) =: a ∈ R exists
and that lim supm,n→∞H(Qm,n|R) ≥ a for Qm,n := (Qm + Qn)/2.4 Then
(Qn) converges in variation.

Proof. We first note the “parallelogram identity” which follows directly from
Definition 1.1:

H(Qm|R) +H(Qn|R) = 2H(Qm,n|R) +H(Qm|Qm,n) +H(Qn|Qm,n).

By the assumption, taking lim supm,n→∞ on both sides shows that the last
two terms converge to zero. Using

∥Qm −Qn∥TV ≤ ∥Qm −Qm,n∥TV + ∥Qn −Qm,n∥TV

as well as Pinsker’s inequality (Lemma 1.2), we deduce the Cauchy property
limm,n ∥Qm −Qn∥TV = 0.

We can now establish existence and uniqueness of a minimizer forH( · |R)
within a suitable set Q, sometimes called the entropic projection ofR onto Q.5

Theorem 1.10. Let ∅ ̸= Q ⊆ P(Ω) be convex and closed in variation, and
suppose that Qfin := {Q ∈ Q : H(Q|R) <∞} ≠ ∅.

(a) There exists a unique Q∗ ∈ Q such that

H(Q∗|R) = inf
Q∈Q

H(Q|R) ∈ [0,∞).

Moreover, Q∗ ≫ Q for any Q ∈ Qfin. In particular, if there exists
Q ∈ Qfin with Q ∼ R, then Q∗ ∼ R.

(b) Q0 ∈ Q is the minimizer Q∗ if and only if Z0 := dQ0/dR exists and6

EQ[logZ0] ≥ H(Q0|R) for all Q ∈ Qfin. (1.9)

Proof. Let Qn ∈ Q be such that H(Qn|R) → a := infQ∈QH(Q|R). By
convexity we have Qm,n = (Qm + Qn)/2 ∈ Q and hence H(Qm,n|R) ≥ a
for all m,n. Lemma 1.9 now shows that (Qn) has a limit Q∗ in variation,
and Q∗ is a minimizer by the lower semicontinuity of H( · |R); cf. Lemma 1.3.
Uniqueness holds due to the strict convexity of H( · |R).

4As lim infm,n→∞H(Qm,n|R) ≤ a by convexity, this condition is actually equivalent
to limm,n→∞H(Qm,n|R) = a.

5Or I-projection, following [10] which used I instead of H to denote relative entropy.
6We have EQ[(logZ0)

+] < ∞ for all Q ∈ Qfin by Lemma 1.4 (a), so that the integral
EQ[logZ0] ∈ [−∞,∞) is well-defined as soon as Z0 exists.
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Let Q0 ∈ Q satisfy Q0 ≪ R, and Q1 ∈ Qfin. For λ ∈ [0, 1], consider
Qλ = λQ1 + (1 − λ)Q0 and Zλ = dQλ/dR. As λ 7→ h(Zλ) is convex, its
difference quotient decreases monotonically to ∂λ|λ=0+H(Qλ|R) as λ ↓ 0,

h(Z1)− h(Z0) ≥
h(Zλ)− h(Z0)

λ
↓ (Z1 − Z0)h

′(Z0) = (Z1 − Z0)(1 + logZ0).

If Q0 ∈ Qfin, the left-hand side is integrable and monotone convergence
yields

∂λ|λ=0+H(Qλ|R) = ∂λ|λ=0+E[h(Zλ)] = E[(Z1 − Z0)h
′(Z0)]

= E[(Z1 − Z0)(1 + logZ0)]

= ER[Z1 logZ0]−H(Q0|R) ∈ [−∞,∞). (1.10)

This identity remains valid forQ0 ∈ Q\Qfin if the derivative on the left-hand
side is interpreted as −∞.

Suppose that Q0 is the minimizer Q∗. Then ∂λ|λ=0+H(Qλ|R) ≥ 0 and
we conclude that

Z1 logZ0 ∈ L1(R) and ER[Z1 logZ0] ≥ H(Q0|R), (1.11)

which is (1.9). Note also that Q1 ̸≪ Q0 would imply R{Z0 = 0, Z1 > 0} =
R{Z1 logZ0 = −∞} > 0, contradicting (1.11).

Conversely, if Q0 ∈ Q satisfies (1.9) and Q ∈ Qfin is arbitrary, then
Lemma 1.4 (b) shows the equality in

H(Q|R) ≥ H(Q|R)−H(Q|Q0) = EQ[log dQ0

dR ] ≥ H(Q0|R). (1.12)

In particular, H(Q0|R) is minimal.

The last assertion in Theorem 1.10 (a) confirms the intuition that Q∗,
being the “most diffuse” (relative to R) measure in Q, should have the largest
support among all Q ∈ Q with Q ≪ R. Analytically, the reason is that
h′(0) = 1 + log 0 = −∞; i.e., increasing the value of a vanishing density by
a small amount leads to a large reduction in entropy.

As seen in the proof, Theorem 1.10 (b) is a variational first-order condi-
tion, stating that the directional derivative of the cost functional at the min-
imizer should be nonnegative in all admissible directions. In regular cases,
we may expect that the minimizer is an interior solution and the derivative is
zero in all admissible directions. (Indeed, it holds for the case of Schrödinger
bridges; cf. the discussion following Proposition 2.17.) That corresponds
to (1.9) holding with equality, or equivalently to Q 7→ EQ[log dQ0

dR ] being
constant on Qfin. The latter will be used as a condition in several state-
ments below.
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Remark 1.11. The “if” part of Theorem 1.10 (b) holds as soon as Qfin ̸= ∅,
even for not necessarily convex or closed Q—those conditions were not used
in the proof. The “only if” part used convexity, though not closedness.

The following Pythagorean-type relationship reflects the strict convexity
of the entropy minimization problem: if H(Q|R) is close to infQH( · |R),
then Q is close to the minimizer Q∗.

Corollary 1.12. Let Q ⊂ P(Ω) be convex. If Q∗ minimizes H( · |R) over Q,
then

H(Q|Q∗) ≤ H(Q|R)−H(Q∗|R) for all Q ∈ Qfin.

If Q 7→ EQ[log dQ∗
dR ] is constant on Qfin, the above holds with equality.

Proof. Both assertions follow from (1.12) with Q0 = Q∗ and Remark 1.11.
The second assertion is also immediate from Lemma 1.4 (b) alone.

The optimal log-density has the following integrability property.

Corollary 1.13. Let Q ⊂ P(Ω) be convex. If Q∗ minimizes H( · |R) over Q,
then

log
dQ∗
dR

∈ L1(Q) for all Q ∈ Qfin.

Proof. Let Z∗ = dQ∗/dR and Q ∈ Qfin. As already stated in the footnote
of Theorem 1.10, Lemma 1.4 (a) ensures that EQ[(logZ∗)

+] < ∞. On the
other hand, (1.9) with Q0 = Q∗ clearly implies EQ[logZ∗] > −∞.

The next corollary is stated merely for emphasis; it is obtained by spe-
cializing the inequality in (1.9) to an equality and recalling Remark 1.11.

Corollary 1.14. Let Q0 ∈ Q ⊂ P(Ω) and Qfin ̸= ∅. If

Q 7→ EQ
[
log dQ0

dR

]
is constant on Qfin ∪ {Q0},

then Q0 ∈ Qfin and Q0 ∈ argminQH( · |R).

As mentioned above, the constancy in Corollary 1.14 corresponds to
the directional derivative of the entropy at Q0 being zero, for all directions
within Qfin. The following sufficient condition for optimality is more gen-
eral, and easier to verify in practice, as it only asks for an approximating
sequence with a constancy as in Corollary 1.14.

Proposition 1.15. Let Q0 ∈ Q ⊂ P(Ω) satisfy Q0 ≪ R and consider the
log-density ζ := log dQ0

dR . Suppose there exist ζn ∈ L1(Q0) such that

12



(i) EQ[ζn] = EQ0 [ζn] for all Q ∈ Qfin,

(ii) lim supnE
Q0 [ζn] ≥ EQ0 [ζ],

(iii) lim supnE
R[eζn ] ≤ 1.

Then H(Q0|R) = infQ∈QH(Q|R) ∈ [0,∞]. In particular, if Qfin ̸= ∅, then
Q0 is a minimizer.

Proof. The claim is trivial if Qfin = ∅. Fix an arbitrary Q ∈ Qfin, set
Z := dQ/dR and Z0 := dQ0/dR = exp(ζ). The convex function ℏ(x) :=
h(x)− x = x log x− x has Fenchel conjugate ℏ∗(y) = supx[xy − ℏ(x)] = ey,
which yields Fenchel’s inequality

ℏ(Z) ≥ ζnZ − ℏ∗(ζn). (1.13)

As ER[ζnZ] = EQ[ζn] = EQ0 [ζn] by (i), taking expectations in (1.13) yields

H(Q|R)− 1 = ER[ℏ(Z)] ≥ ER[ζnZ]− ER[ℏ∗(ζn)] = EQ0 [ζn]− ER[eζn ]

and then (ii) and (iii) allow us to conclude that

H(Q|R)−1 ≥ lim supEQ0 [ζn]−lim supER[eζn ] ≥ EQ0 [ζ]−1 = H(Q0|R)−1.

Remark 1.16. (a) Often the ζn in Proposition 1.15 are chosen as log-
densities of some probabilities Qn, and then (iii) is trivial as ER[eζn ] = 1.
In fact, the ζn can always be normalized in this fashion: an equivalent way
to state the proposition would be to assume ER[eζn ] = 1 and omit (iii).

(b) Proposition 1.17 below will imply that the sufficient condition of
Proposition 1.15 is also necessary in many cases. In Proposition 1.17, Q0 =
Q∗ is the minimizer and we construct Qn with log-density ζn = log dQn

dR
satisfying ζn → ζ in L1(Q0), which of course implies (ii) and (iii). In many
cases, we can construct the approximation such that ζn also satisfy (i).

The next result serves two purposes. First, we want to describe the
minimizer Q∗ over Q through an approximation with measures Qn that
can be constructed more explicitly. Indeed, most convex sets Q of interest
can be characterized through countably many linear constraints, and then
a natural polyhedral approximation Qn can be found by enforcing only the
first n constraints. In this context, one may be able to determine Qn :=
argminQn H( · |R) by elementary means, and then the next result yields that
Qn → Q∗ and also that the log-densities converge. We will apply this idea to
study the structure of Schrödinger bridges in Section 2.3.1. A second purpose
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is to relate the condition Qfin ̸= ∅ to the convergence of the approximation.
This will not be used until Section 5.2; for now the reader can focus on a
situation where Qfin ̸= ∅ is given.

Proposition 1.17. Consider a decreasing sequence of sets Qn ⊂ P(Ω)
that are convex and closed in variation, and let Q := ∩nQn. Suppose that
Qn,fin ̸= ∅ and let Qn = argminQn H( · |R) be the minimizer over Qn.7 The
following are equivalent:

(i) Qfin ̸= ∅,

(ii) Qn converge in variation and H(limnQn|R) <∞,

(iii) limnH(Qn|R) <∞.

If these conditions are satisfied, then

Qn → Q∗ in variation and H(Qn|R) → H(Q∗|R), (1.14)

where Q∗ = argminQH( · |R). Moreover, Qn ≫ Qn+1 ≫ Q∗ as well as

H(Q∗|Qn) → 0 and log
dQn
dR

→ log
dQ∗
dR

in L1(Q∗). (1.15)

Proof. The inclusion Qn ⊃ Qn+1 ⊃ Q implies that an := H(Qn|R) is in-
creasing and an ≤ a∗ := infQ∈QH(Q|R), so that a := lim an ≤ a∗ and in
particular (i)⇒(iii). For m ≥ n we have Qm,n := (Qm + Qn)/2 ∈ Qn and
thus H(Qm,n|R) ≥ an, hence lim supm,n→∞H(Qm,n|R) ≥ a. If a < ∞,
then Lemma 1.9 yields that Qn converge in variation to some limit Q. As
Q ∈ ∩nQn = Q and

H(Q|R) ≤ lim an = a ≤ a∗

due to Lemma 1.3, we see that Q ∈ Qfin and Q ∈ argminQH( · |R), so
that Q = Q∗ by the uniqueness in Theorem 1.10 (note that Q is closed and
convex, as an intersection of such sets). In particular, we have shown both
(iii)⇒(i) and (iii)⇒(ii). On the other hand, Q ∈ ∩nQn implies H(Q|R) ≥ an
for all n and hence H(Q|R) = lim an. This shows (ii)⇒(iii) as well as (1.14).
Finally, Theorem 1.10 and Qn ⊃ Qn+1 ⊃ Q also yield the stated absolute
continuity.

It remains to prove (1.15). We use Corollary 1.12 for the problem over Qn

(where Qn is the minimizer and Q∗ ∈ Qn,fin is a suboptimal measure) to
find

H(Q∗|Qn) ≤ H(Q∗|R)−H(Qn|R).
7A unique minimizer exists by Theorem 1.10. One can note that Qn,fin ̸= ∅ is implied

by Qfin ̸= ∅.
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As H(Qn|R) → H(Q∗|R) was already shown, we deduce H(Q∗|Qn) → 0.
The second part of (1.15) then follows by Lemma 1.5.

In the application of Proposition 1.17 to Schrödinger bridges in Sec-
tion 2.3.1, each of the sets Qn is of the form considered in the next example,
given by n linear equality constraints.

Example 1.18. Given bounded measurable functions ϕ1, . . . , ϕn : Ω → R,
let

Q = {Q ∈ P(Ω) : EQ[ϕi] = 0, 1 ≤ i ≤ n}.

Assume that Qfin ̸= ∅. As Q is convex and closed, Theorem 1.10 then yields
a unique minimizer Q∗ ∈ Q. We claim that Q∗ is uniquely characterized
(within Q) by having a density of the form

dQ∗
dR

= a exp(b1ϕ1 + · · ·+ bnϕn) for some bi ∈ R and a > 0. (1.16)

Sufficiency of (1.16) is immediate from Corollary 1.14; we need to show
that there exists Q0 ∈ Q of the form (1.16). To this end, we construct the
minimizer using Lagrange multipliers. We confine ourselves to a sketch and
refer to [19, Section 3, esp. Corollary 3.25] for a detailed treatment. Indeed,
Qfin ̸= ∅ implies that for all b = (b1, . . . , bn) ∈ Rn,

R{b · Φ > 0} > 0 =⇒ R{b · Φ < 0} > 0, (1.17)

where Φ = (ϕ1, . . . , ϕn) and · is the Euclidean inner product. This can be
used to show that the finite-dimensional concave optimization problem

max
b∈Rn

ER[− exp(b · Φ)]

has a solution b. (This is known as the exponential utility maximization
problem in financial economics, where (1.17) is interpreted as absence of
arbitrage opportunities.) Moreover, the maximizer b satisfies the first-order
condition ER[−ϕi exp(b ·Φ)] = 0 for i = 1, . . . , n. We can now define Q0 via
dQ0

dR = a exp(b · Φ), where a > 0 is the normalizing constant. Then Q0 is of
the form (1.16) and the first-order condition states that Q ∈ Q as desired.
While Corollary 1.14 directly implies that Q0 ∈ Q has minimal entropy,
we mention that this also follows through convex duality along the lines of
Lemma 1.3. See [19, Section 3] for a detailed discussion which also shows
that (1.17) implies Qfin ̸= ∅ as |Φ| is bounded, or more generally whenever
ER[er|Φ|] < ∞ for all r > 0. A different, more abstract proof of (1.16) is
given in [10, Theorem 3.1].
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2 Static Schrödinger Bridges

Let (X,FX, µ) and (Y,FY, ν) be separable8 probability spaces, X × Y their
product (endowed with the product σ-field FX ⊗ FY) and R ∈ P(X × Y) a
given reference probability measure. We denote by Π(µ, ν) ⊂ P(X× Y) the
set of couplings; that is, the set of all Q ∈ P(X× Y) satisfying∫
X×Y

f(x)Q(dx, dy) =

∫
X
f(x)µ(dx),

∫
X×Y

g(y)Q(dx, dy) =

∫
Y
g(y) ν(dy)

(2.1)

for all bounded measurable f : X → R and g : Y → R. We observe that
Π(µ, ν) is convex and closed in variation, putting us in the framework of
Theorem 1.10 with Q := Π(µ, ν). Its requirement that Πfin(µ, ν) := Qfin

is nonempty—i.e., that there exists π ∈ Π(µ, ν) with H(π|R) < ∞—will of
course depend on the choice of R. A simple sufficient condition is

R≫ µ⊗ ν and log
d(µ⊗ ν)

dR
∈ L1(µ⊗ ν), (2.2)

as this is equivalent to µ ⊗ ν ∈ Πfin(µ, ν). We write (φ ⊕ ψ)(x, y) :=
φ(x) + ψ(y) for functions φ : X → [−∞,∞) and ψ : Y → [−∞,∞).

Theorem 2.1. Let Πfin(µ, ν) ̸= ∅. Then there is a unique coupling

π∗ = argmin
Π(µ,ν)

H( · |R),

called the (static) Schrödinger bridge from µ to ν.

(a) Let R ∼ µ ⊗ ν. Then there are measurable functions φ : X → R and
ψ : Y → R, called Schrödinger potentials, such that

dπ∗
dR

= eφ⊕ψ R-a.s.

The potentials are a.s. unique up to an additive constant.9

8A probability space (X,FX, µ) is called separable if there is a countable family (An) ⊂
FX such that for every A ∈ FX and ε > 0, there exists n with µ(A△An) < ε. This property
holds if and only if L1(X,FX, µ) is separable (consider simple functions based on (An) or
see [2, Exercise 4.7.64, p. 307]). All probability spaces of interest to us are separable; some
very general sufficient conditions are detailed in [2, Section 7.14(iv), p. 132].

9I.e., if φ′, ψ′ are potentials, then φ′ = φ+a µ-a.s. and ψ′ = ψ−a ν-a.s. for some a ∈ R.
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(b) Conversely, let π0 ∈ Π(µ, ν) admit a density of the form

dπ0
dR

= eφ⊕ψ R-a.s.

for some measurable functions φ : X → [−∞,∞), ψ : Y → [−∞,∞).
Then π0 is the Schrödinger bridge.10

If (2.2) holds, then φ ∈ L1(µ) and ψ ∈ L1(ν).

Remark 2.2. In Theorem 2.1 (b), it is important that log dπ0
dR = φ⊕ψ holds

R-a.s. rather than merely π0-a.s. Indeed, let X = Y be a finite set with
uniform measure µ = ν and R = µ ⊗ ν. Clearly the Schrödinger bridge is
given by π∗ = R. If π0 is the identical coupling (i.e., the uniform distribution
on the diagonal {(x, x) : x ∈ X}), then dπ0/dR = exp(φ ⊕ ψ) holds π0-a.s.
for φ = 0 and ψ = log(1/|X|), but π0 ̸= π∗.

Occasionally we want to apply Theorem 2.1 (b) in a setting where it is
not known a priori that Πfin(µ, ν) ̸= ∅. The following variant includes a
sufficient condition for that.

Corollary 2.3. Let π0 ∈ Π(µ, ν) admit a density of the form dπ0
dR = eφ⊕ψ

R-a.s. for some measurable functions φ : X → [−∞,∞), ψ : Y → [−∞,∞)
satisfying (φ ⊕ ψ)+ ∈ L1(µ ⊗ ν). Then π0 ∈ Πfin(µ, ν) and π0 is the
Schrödinger bridge. Moreover, (φ,ψ) ∈ L1(µ) × L1(ν) and H(π0|R) =
µ(φ) + ν(ψ).

Proof. Lemma 2.23 will show that (φ,ψ) ∈ L1(µ) × L1(ν) and H(π0|R) =
µ(φ)+ν(ψ). Thus π0 ∈ Πfin(µ, ν) ̸= ∅ and now Theorem 2.1 (b) applies.

Before proving Theorem 2.1, we detail three more corollaries. First, we
emphasize a direct consequence of the fact that dπ∗

dR > 0 in Theorem 2.1 (a);
compare also Theorem 1.10.

Corollary 2.4. If Πfin(µ, ν) ̸= ∅ and R ∼ µ ⊗ ν, the Schrödinger bridge
satisfies π∗ ∼ µ ⊗ ν. In particular, if there exists any coupling with finite
entropy, there also exists a coupling with finite entropy that is equivalent
to µ⊗ ν.

10While π0 ∈ Πfin(µ, ν) is not assumed a priori, it is part of the conclusion. Similarly,
φ,ψ are a priori allowed to take the value −∞, but Lemma 2.14 below shows that φ,ψ
are necessarily finite a.s.
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2.1 Schrödinger Equations

Next, we characterize the Schrödinger potentials as the solution to a system
of two equations, the Schrödinger system. These equations will be used in
Section 6 to define the iterates in Sinkhorn’s algorithm.

Let R ≪ µ ⊗ ν, then dR
d(µ⊗ν) exists and we may define a measurable

function c : X× Y → (−∞,∞] via

e−c(x,y) =
dR

d(µ⊗ ν)
.

(There is no particular necessity to write the density in exponential form;
our notation is merely chosen to resemble the setting of entropic optimal
transport in Section 4 below.) In most cases of interest to us, we have
R ∼ µ⊗ν and then c is R-valued. For measurable functions φ : X → [−∞,∞)
and ψ : Y → [−∞,∞), we study the so-called Schrödinger equations

φ(x) = − log

∫
Y
eψ(y)−c(x,y) ν(dy) µ-a.s., (SE1)

ψ(y) = − log

∫
X
eφ(x)−c(x,y) µ(dx) ν-a.s. (SE2)

Consider the measure π(φ,ψ) defined by

dπ(φ,ψ) := eφ⊕ψ dR = eφ⊕ψ−c d(µ⊗ ν).

Recalling that the marginal density is obtained by integrating the joint den-
sity over the other marginal, we see that

(SE1) ⇐⇒ the first marginal of π(φ,ψ) is µ, (2.3)
(SE2) ⇐⇒ the second marginal of π(φ,ψ) is ν. (2.4)

If π(φ,ψ) ∈ Π(µ, ν), it follows that (φ,ψ) is a solution of (SE1)–(SE2). That
is assertion (a) below, whereas (b) is a consequence of Theorem 2.1 (b).

Corollary 2.5 (Schrödinger Equations). Let e−c = dR/d(µ⊗ ν).

(a) If (φ,ψ) are Schrödinger potentials, then (φ,ψ) solve the Schrödinger
equations (SE1)–(SE2).

(b) Let φ : X → [−∞,∞) and ψ : Y → [−∞,∞) be measurable functions.
If (φ,ψ) solve (SE1), then

dπ(φ,ψ) := eφ⊕ψ dR
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defines a probability measure π(φ,ψ) whose first marginal is µ. De-
note by ν ′ its second marginal. If Πfin(µ, ν ′) ̸= ∅, then π(φ,ψ) is the
Schrödinger bridge from µ to ν ′. The analogue holds for (SE2).

In particular, if (φ,ψ) solve (SE1)–(SE2) and Πfin(µ, ν) ̸= ∅, then
π(φ,ψ) is the Schrödinger bridge from µ to ν. If R ∼ µ ⊗ ν, it fol-
lows that the solution of (SE1)–(SE2) is a.s. unique up to an additive
constant.

In Remark 3.4, we will further portray the Schrödinger system as the
Euler–Lagrange equations (i.e., variational first-order conditions) describing
the optimality of the potentials in a maximization problem.

2.2 Cyclical Invariance

Theorem 2.1 shows the relation between optimality of a coupling and the
decomposition of its density as a product eφ(x)eφ(y). In this section we
introduce a reformulation for the existence of a decomposition that will be
useful in the context of passing to limits (see Sections 5 and 6).

Definition 2.6. A probability measure π ∈ P(X × Y) is called cyclically
invariant (with respect to R) if π ∼ R and its density dπ

dR admits a version
Z : X× Y → (0,∞) such that for all k ≥ 2,

k∏
i=1

Z(xi, yi) =

k∏
i=1

Z(xi, yi+1) for all (xi, yi)
k
i=1 ∈ (X× Y)k, (2.5)

with the cyclical convention yk+1 := y1.

Similarly to the decomposition into potentials, one can see (2.5) as a
first-order condition of optimality. Indeed, for a discrete problem where
X = {xi, 1 ≤ i ≤ k} and Y = {yi, 1 ≤ i ≤ k}, one can find by elementary
perturbation arguments that the optimal density has to verify (2.5).

Lemma 2.7. Let π ∈ P(X×Y) satisfy π ∼ R. Then π is cyclically invariant
if and only if

dπ

dR
= eφ⊕ψ R-a.s. (2.6)

for some measurable functions φ : X → R, ψ : Y → R.

Proof. Let (2.6) hold and Z := eφ⊕ψ. Then (2.5) boils down to

exp

(
k∑
i=1

φ(xi) + ψ(yi)

)
= exp

(
k∑
i=1

φ(xi) + ψ(yi+1)

)
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which holds by simply rearranging the sum.
Conversely, let Z : X×Y → (0,∞) satisfy (2.5) and fix an arbitrary point

(x∗, y∗) ∈ X×Y. Define the measurable functions φ : X → R, ψ : Y → R via
eψ(y) = Z(x∗, y) and eφ(x) = Z(x, y∗)e

−ψ(y∗), then eφ(x∗) = 0 and

eφ(x)+ψ(y) =
Z(x, y∗)Z(x∗, y)

eψ(y∗)
=
Z(x∗, y)Z(x, y∗)

Z(x∗, y∗)
= Z(x, y)

where the last equality holds due to (2.5) with k = 2 and (x1, y1) = (x, y)
and (x2, y2) = (x∗, y∗).

Remark 2.8. More generally, the Borwein–Lewis theorem [3, Theorem 3.3]
states that a function Z : S → (0,∞) on an arbitrary subset S ⊂ X × Y
can be decomposed as Z = eφ⊕ψ if and only if it satisfies a relation similar
to (2.5). The proof is particularly simple when S = X×Y as in Lemma 2.7.

In view of Lemma 2.7, the following is a special case of Theorem 2.1.

Corollary 2.9. Let Πfin(µ, ν) ̸= ∅ and R ∼ µ⊗ ν. Then π ∈ Π(µ, ν) is the
Schrödinger bridge if and only if it is cyclically invariant.

2.3 Proof of Theorem 2.1

In Theorem 2.1, existence and uniqueness of π∗ follow immediately from
Theorem 1.10. We start with the proof of part (a) in the next section, then
continue with the verification part (b) and end with the integrability of the
potentials.

2.3.1 Existence and Uniqueness of the Decomposition

Suppose that X,Y are separable. Then instead of using all bounded mea-
surable functions f, g to define Π(µ, ν) in (2.1), it suffices to test against
suitable countable dense families. Indeed, we can find (fi)i≥1 ⊂ L∞(µ) and
(gi)i≥1 ⊂ L∞(ν) such that Q ∈ Π(µ, ν) if and only if∫

X×Y
fi(x)Q(dx, dy) = 0,

∫
X×Y

gi(y)Q(dx, dy) = 0, i ≥ 1. (2.7)

This enables a natural approximation of Π(µ, ν) defined by finitely many
linear constraints: let Qn be the set of all Q ∈ P(X× Y) satisfying (2.7) for
1 ≤ i ≤ n (instead of all i ≥ 1). Then Qn is convex, closed in variation and
∩nQn = Π(µ, ν) = Q as in Proposition 1.17, which shows that

argmin
Qn

H( · |R) =: πn → π∗ in variation,
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or equivalently, dπn/dR→ dπ∗/dR in L1(R). On the other hand, we obtain
from Example 1.18 that

dπn
dR

= exp(φn ⊕ ψn)

for some bounded measurable functions φn : X → R and ψn : Y → R; namely,
φn and ψn are linear combinations of fi, i ≤ n and gi, i ≤ n, respectively
(and a constant function). After passing to a subsequence if necessary, we
conclude that

dπ∗
dR

= lim
n→∞

exp(φn ⊕ ψn) R-a.s. (2.8)

We would like to pass from the existence of the R-a.s. limit (2.8) to the
separate existence of limits φ = limφn and ψ = limψn in [−∞,∞). That
is of course not possible at this stage, as there is a degree of freedom in
choosing (φn, ψn): clearly (φn − an, ψn + an) is another possible choice, for
arbitrary an ∈ R. Below, we show that under our assumption R ∼ µ ⊗ ν,
this is indeed the only degree of freedom and the separate limits exist after
a normalization of the form φn(x∗) = 0 for all n. To that end, we first study
more closely the structure of the set S where the limit (2.8) exists.

To see where we are headed, note that constructing the separate limits
would be straightforward if limφn ⊕ψn existed (in R, say) on a product set
A × B of full measure: Choose a normalization φn(x∗) = 0 at an arbitrary
x∗ ∈ A. Given (x, y) ∈ A×B, we also have (x∗, y) ∈ A×B by the product
structure, and writing

φn(x) = φn(x)− φn(x∗) = (φn ⊕ ψn)(x, y)− (φn ⊕ ψn)(x∗, y)

shows that limφn(x) exists. In general, a set of full product measure may
fail to contain any measurable rectangles A × B of positive measure. The
next lemma provides a slightly weaker property that serves as a proxy for
our purposes. (The reader who is less technically inclined may take Corol-
lary 2.12 below for granted and skip directly to Section 2.3.3 without loss of
continuity.)

2.3.2 On Sets of Full Product Measure

Lemma 2.10. Let (X,FX, µ) and (Y,FY, µ) be probability spaces. If a set
S ∈ FX ⊗ FY has product measure (µ ⊗ ν)(S) = 1, then (µ ⊗ ν)-almost all
(x∗, y∗) ∈ S have the following property: there are X0 ⊂ X and Y0 ⊂ Y with
µ(X0) = ν(Y0) = 1 such that S0 := S ∩ (X0 × Y0) satisfies (x∗, y∗) ∈ S0 and

(x, y) ∈ S0 =⇒ (x∗, y) ∈ S0, (x, y∗) ∈ S0.
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Proof. Let Sx = {y : (x, y) ∈ S} denote the section at x ∈ X, and anal-
ogously for y ∈ Y. Set X1 = {x ∈ X : ν(Sx) = 1}. In view of Fu-
bini’s theorem, (µ ⊗ ν)(S) = 1 implies µ(X1) = 1. Let x∗ ∈ X1 and set
Y0 = {y ∈ Y : µ(Sy) = 1} ∩ Sx∗ . Then ν(Y0) = 1 following the same argu-
ment. Pick any y∗ ∈ Y0 and note that X0 := X1 ∩ Sy∗ satisfies µ(X0) = 1.

Consider an arbitrary point (x, y) ∈ X0 × Y0, then (x∗, y) ∈ S0 and
(x, y∗) ∈ S0 by the construction of (x∗, y∗). In particular, this applies to any
(x, y) ∈ S0.

We observe the following consequences for decompositions of functions.

Lemma 2.11. Let X,Y be sets and S0 ⊂ X×Y. Suppose there exists a point
(x∗, y∗) ∈ S0 such that (x∗, y) ∈ S0 and (x, y∗) ∈ S0 for all (x, y) ∈ S0.
Write X0 := projX S0 and Y0 := projY S0, and consider functions φ,φ′, φn :
X0 → [−∞,∞) and ψ,ψ′, ψn : Y0 → [−∞,∞) that are finite at x∗ and y∗,
respectively.

(i) If φ⊕ψ = φ′⊕ψ′ on S0, then φ = φ′+a on X0 and ψ = ψ′−a on Y0,
where a := φ(x∗)− φ′(x∗).

(ii) Let F := lim (φn ⊕ ψn) ∈ [−∞,∞) exist on S0 with F (x∗, y∗) ∈ R,
where φn are normalized to φn(x∗) = 0. Then the pointwise limits φ :=
limφn and ψ := limψn exist in [−∞,∞) on X0 and Y0, respectively.
Indeed, they are given by φ(x) = F (x, y∗) − F (x∗, y∗) and ψ(y) =
F (x∗, y).

Proof. (i) Without loss of generality, φ(x∗) = φ′(x∗). Set F := φ⊕ψ. Given
(x, y) ∈ S0, we know that (x∗, y) ∈ S0 and hence

ψ(y) = F (x∗, y)− φ(x∗) = F (x∗, y)− φ′(x∗) = ψ′(y),

and then also φ(x) = F (x, y∗)− ψ(y∗) = F (x, y∗)− ψ′(y∗) = φ′(x).

(ii) Define φ(x) := F (x, y∗) − F (x∗, y∗) and ψ(y) := F (x∗, y). Writing
Fn := φn ⊕ ψn, we have Fn → F on S0. Therefore,

φn(x) = Fn(x, y∗)− Fn(x∗, y∗) → F (x, y∗)− F (x∗, y∗) = φ(x)

and

ψn(y) = Fn(x∗, y)− φn(x∗) = Fn(x∗, y) → F (x∗, y) = ψ(y).

For ease of reference, we record the combined result of the two lemmas.
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Corollary 2.12. Let (X,FX, µ) and (Y,FY, µ) be probability spaces. Con-
sider measurable functions φ,φ′, φn : X → [−∞,∞) and ψ,ψ′, ψn : Y →
[−∞,∞).

(i) If (µ ⊗ ν){φ ⊕ ψ > −∞} > 0 and φ ⊕ ψ = φ′ ⊕ ψ′ (µ ⊗ ν)-a.s., then
φ = φ′ + a µ-a.s. and ψ = ψ′ − a ν-a.s. for some a ∈ R.

(ii) Let F := lim (φn ⊕ ψn) ∈ [−∞,∞) exist (µ⊗ ν)-a.s. and suppose that
(µ⊗ν){F > −∞} > 0. Then F = φ⊕ψ for some measurable functions
φ : X → [−∞,∞) and ψ : Y → [−∞,∞). Moreover, there are an ∈ R
such that φ = lim(φn − an) µ-a.s. and ψ = lim(ψn + an) ν-a.s.

Proof. (i) We apply Lemma 2.10 to S := {φ ⊕ ψ = φ′ ⊕ ψ′}, then the
assumption (µ⊗ν){φ⊕ψ > −∞} > 0 allows us to chose (x∗, y∗) ∈ {φ⊕ψ >
−∞} and the claim follows from Lemma 2.11 (i).

(ii) Consider the measurable set S := {lim(φn⊕ψn) exists in [−∞,∞)}.
We apply Lemma 2.10 to S, then (µ⊗ ν){F > −∞} > 0 allows us to chose
(x∗, y∗) ∈ {F > −∞}. In the assertion of Lemma 2.10 we may assume
that X0 = projX S0 and Y0 = projY S0 and that these sets are measurable
(otherwise remove an appropriate nullset). We normalize φn(x∗) = 0 for
all n (by subtracting a constant from φn and adding the same to ψn), then
Lemma 2.11 (ii) shows that φ = limφn and ψ = limψn exist a.s. in [−∞,∞).
They are measurable as limits of measurable functions.

Remark 2.13. In this framework (and in contrast to Remark 2.15 below),
the separate measurability of φ,ψ is generally not an issue. Specifically,
let φ : X → [−∞,∞) and ψ : Y → [−∞,∞). If F = φ ⊕ ψ (µ ⊗ ν)-
a.s. where F is measurable and (µ ⊗ ν){F > −∞} > 0, then φ,ψ are a.s.
measurable. Indeed, our proof shows that ψ(·) = F (x∗, ·)−φ(x∗) µ-a.s. and
φ(·) = F (·, y∗) − ψ(y∗) ν-a.s. for certain (x∗, y∗), and the right-hand sides
are clearly measurable.

2.3.3 Completing the Proof of Existence and Uniqueness

After this excursion, let us return to (2.8) and complete the proof of the
existence and uniqueness of the decomposition dπ∗

dR = eφ⊕ψ R-a.s.
The measurable set S = {F := lim(φn ⊕ ψn) exists in [−∞,∞)} satis-

fies R(S) = 1 by (2.8) and hence (µ⊗ ν)(S) = 1. The set S′ = {F > −∞}
satisfies π∗(S′) = 1 and hence R(S′) > 0 and then (µ ⊗ ν)(S′) > 0. Corol-
lary 2.12 thus yields the existence and uniqueness of φ,ψ.

It remains to show that φ,ψ are a.s. finite. The following completes the
proof of Theorem 2.1 (a).
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Lemma 2.14. Let π0 ∈ Π(µ, ν) admit a density of the form

dπ0
dR

= eφ⊕ψ R-a.s.

for some measurable functions φ : X → [−∞,∞), ψ : Y → [−∞,∞). Then
φ,ψ are a.s. finite and π0 ∼ R.

Proof. Let A := {φ = −∞}, then dπ0
dR = 0 on A× Y and π0 ∈ Π(µ, ν) yields

µ(A) = π0(A× Y) =

∫
A×Y

dπ0
dR

dR = 0.

The proof that ψ > −∞ ν-a.s. is analogous.

Remark 2.15. The assumption R ∼ µ⊗ ν is important in Theorem 2.1 (a).
If merely R ≪ µ⊗ ν, a similar result can be shown, but the identity dπ∗

dR =
eφ⊕ψ only holds π∗-a.s., and π∗ ∼ R may fail. Moreover, the uniqueness of
potentials is replaced by a countable number of normalizations (each on a
different subset) instead of just one. The subsequent Example 2.16 illustrates
these points in a simple case. For general R ̸≪ µ⊗ν, one can still decompose
the density of π∗, but now even the measurability of φ,ψ can fail. Roughly
speaking, an uncountable number of normalizations may need to be chosen.
We refer to [3, 18, 34] for these more general situations, whereas our proof
is closer to arguments going back to [15, 17].

Our assumption that X,Y are separable was made to obtain a construc-
tive approximation as detailed below (2.7)—this is the one and only instance
where separability will be used. Assuming separability does not seem to ex-
clude any examples of interest. A less constructive approach based on Hahn–
Banach separation, appropriate for general measurable spaces, is taken in [10,
Theorem 3.1], which shows that the density of π∗ always satisfies

log
dπ∗
dR

= lim
n
(φn ⊕ ψn) in L1(π∗) (2.9)

for some φn ∈ L1(µ) and ψn ∈ L1(ν).11 (One can observe that our con-
structive approximation shares the property (2.9), due to the last assertion
of Proposition 1.17.) If π∗ ∼ R ∼ µ ⊗ ν, we can proceed exactly as above
to deduce the conclusion of Theorem 2.1 (a). If R≪ µ⊗ ν, one can use the

11To avoid confusion, we remark that the corollary stated below Theorem 3.1 in [10] has
a glitch. It asserts that a decomposition with integrable potentials is essentially always
possible, but the proof overlooks the issue that passing to separate limits in (2.9) is not
possible in general. See [18, 33] for more detailed comments.
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arguments of [3, 18, 34] to obtain the decomposition at least π∗-a.s. To ob-
tain it also R-a.s., [18] assumes a priori that there exists π ∈ Πfin(µ, ν) with
π ∼ R; this implies π∗ ∼ R by Theorem 1.10. By contrast, we established
that π∗ ∼ R necessarily holds when R ∼ µ⊗ ν; cf. Corollary 2.4.

Example 2.16. Consider X = Y = {0, 1} with uniform marginals µ, ν
while R is the uniform distribution on {(0, 0), (0, 1), (1, 1)}. Here Πfin(µ, ν)
has the unique element π∗ = (δ(0,0) + δ(1,1))/2, as this is the only coupling
absolutely continuous wrt. R. We observe that π∗ ̸∼ R. The potentials only
need to satisfy

φ(0) + ψ(0) = log 3
2 and φ(1) + ψ(1) = log 3

2 , (2.10)

so that two normalizations are needed to enforce uniqueness. In particular,
the uniqueness of potentials up to an additive constant no longer holds.
Moreover, the formula dπ∗

dR = eφ⊕ψ cannot hold at (1, 0), as π∗{(1, 0)} = 0
would imply φ(1) = −∞ or ψ(0) = −∞, contradicting (2.10). That is, the
decomposition dπ∗

dR = eφ⊕ψ holds π∗-a.s., but not R-a.s.

2.3.4 Decomposition Implies Optimality

Next, we prove the “Verification” Theorem 2.1 (b). Suppose that π0 ∈ Π(µ, ν)
has a density of the form dπ0

dR = exp(φ⊕ψ). If φ ∈ L1(µ) and ψ ∈ L1(ν), then
Eπ[φ ⊕ ψ] = µ(φ) + ν(ψ) is independent of π ∈ Π(µ, ν) and Corollary 1.14
directly implies that π0 = argminπ∈Π(µ,ν)H( · |R). (For brevity, we some-
times denote µ(φ) :=

∫
φdµ.) In this section, we show by an approximation

argument that the conclusion remains valid even without assuming the inte-
grability. In fact, the following result is slightly more precise.

Proposition 2.17. Let Πfin(µ, ν) ̸= ∅ and let π0 ∈ Π(µ, ν) admit a density

log
dπ0
dR

= φ⊕ ψ R-a.s.

for some measurable functions φ : X → [−∞,∞) and ψ : Y → [−∞,∞).
Then

π 7→ Eπ[log dπ0
dR ] is constant over Πfin(µ, ν) ∪ {π0} (2.11)

and π0 = π∗ ∈ Πfin(µ, ν) is the Schrödinger bridge.

Of course the constant value in (2.11) is Eπ0 [log dπ0
dR ] = H(π0|R). While

we have not assumed a priori that H(π0|R) <∞, this is part of the conclu-
sion, obtained on the strength of the assumption that Πfin(µ, ν) ̸= ∅.
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Comparing with Theorem 1.10 and the discussion thereafter, Proposi-
tion 2.17 states that the density of π0 satisfies (1.9) with equality, meaning
that all directional derivatives vanish at π0. In particular, this holds for the
density of the Schrödinger bridge π∗ under the conditions of Theorem 2.1 (a).

The main step for the proof of Proposition 2.17 is the following.

Lemma 2.18. Let φ : X → [−∞,∞] and ψ : Y → [−∞,∞] be measurable.
Then

π 7→ Eπ[φ⊕ ψ] is constant

over {π ∈ Π(µ, ν) : Eπ[(φ⊕ ψ)+] <∞ or Eπ[(φ⊕ ψ)−] <∞}.

Proof. Consider the bounded functions

φn = (−n) ∨ φ ∧ n and ψn = (−n) ∨ ψ ∧ n. (2.12)

Writing ζn = φn ⊕ ψn and ζ = φ ⊕ ψ and A := {ζ > 0}, we have the
properties

{ζn > 0} ⊆ A ⊆ {ζ ≥ 0} ⊆ {ζn ≥ 0}, (2.13)

0 ≤ ζn ↑ ζ on A. (2.14)

Let π ∈ Π(µ, ν). Clearly (2.13) implies that Eπ[ζ+] = Eπ[ζ1A] and Eπ[ζ+n ] =
Eπ[ζn1A]. Using monotone convergence, (2.14) then implies

Eπ[ζ+] = Eπ[ζ1A] = limEπ[ζn1A] = limEπ[ζ+n ].

Analogous assertions hold for the negative part with B := {ζ < 0} instead
of A. If Eπ[ζ+] < ∞ or Eπ[ζ−] < ∞, we can combine the two limits and
conclude that

Eπ[ζ] = Eπ[ζ+]− Eπ[ζ−] = limEπ[ζ+n ]− limEπ[ζ−n ] = limEπ[ζn].

But Eπ[ζn] is constant over π ∈ Π(µ, ν) as ζn is a sum of bounded marginal
functions, and the claim follows.

The following also completes the proof of Theorem 2.1.

Proof of Proposition 2.17. Let π ∈ Πfin(µ, ν), then Eπ[(φ ⊕ ψ)+] < ∞ by
Lemma 1.4 (a). On the other hand, Eπ0 [(φ ⊕ ψ)−] < ∞ as φ ⊕ ψ is the
log-density of π0. Thus Lemma 2.18 implies (2.11) and the last claim follows
via Corollary 1.14.
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Remark 2.19. Another way to argue the optimality of π0 in Proposi-
tion 2.17, is to define ζn = φn ⊕ ψn as in (2.12) and check the condi-
tions (i)–(iii) of Proposition 1.15. Indeed, (i) is clear. For (ii), we use
|ζn| ≤ |ζ| and monotone convergence to see limnE

π0 [ζn] = Eπ0 [ζ]. And
for (iii), eζn ≤ 1 + eζ ∈ L1(R) implies limnE

R[eζn ] = ER[eζ ] = 1.

The following corollary shows in particular that there can be at most one
coupling with density of the form dπ

dR = eφ⊕ψ R-a.s., and as a consequence,
also at most one cyclically invariant coupling. Notably, this holds even if
Πfin(µ, ν) = ∅, which was exploited in [1, 23] to give a meaning to the
Schrödinger bridge π∗ in that situation. When Πfin(µ, ν) = ∅, all couplings
have infinite relative entropy and thus the Schrödinger bridge problem is not
immediately meaningful as an optimization problem.

Corollary 2.20. Let π, π′ ∈ Π(µ, ν) satisfy π′ ≪ π ≪ R and assume that

dπ′

dR
=
dπ

dR
eφ̃⊕ψ̃ R-a.s.

for measurable functions φ̃ : X → [−∞,∞), ψ̃ : Y → [−∞,∞). Then π = π′.

Proof. The assumption implies that dπ′

dπ = eφ̃⊕ψ̃ π-a.s. Thus, Proposi-
tion 2.17 (with π playing the role of the reference measure) yields that π′

minimizes H( · |π) over Π(µ, ν). But as π ∈ Π(µ, ν), it is clear that π is the
unique minimizer of H( · |π), thus π = π′.

2.3.5 Integrability of Potentials

Finally, we show the claimed integrability of the potentials. As π∗ has finite
entropy, it is clear that its log-density φ ⊕ ψ is π∗-integrable. The subtlety
is that in general, this does not imply that φ,ψ are separately integrable for
the marginals µ, ν of π∗ (cf. Remark 2.22 below). A simple counterexample
can be found in [33, Example 1]; see also [18].

Lemma 2.21. Suppose that (2.2) holds, or equivalently µ⊗ ν ∈ Πfin(µ, ν).
If π∗ ∈ Π(µ, ν) is the Schrödinger bridge and

log
dπ∗
dR

= φ⊕ ψ R-a.s.

for some measurable functions φ : X → [−∞,∞) and ψ : Y → [−∞,∞),
then φ ∈ L1(µ) and ψ ∈ L1(ν).
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Proof. Recall from Corollary 1.13 that

log
dπ∗
dR

∈ L1(π0) for all π0 ∈ Πfin(µ, ν).

In particular, φ ⊕ ψ ∈ L1(µ ⊗ ν), which by Fubini implies φ ∈ L1(µ) and
ψ ∈ L1(ν); cf. Remark 2.22 below.

Remark 2.22. A note of caution regarding the last step in the preceding
proof: as mentioned above, for a coupling π ̸= µ⊗ν, in general, φ⊕ψ ∈ L1(π)
does not imply φ ∈ L1(µ) or ψ ∈ L1(ν).

Let π ∈ Π(µ, ν) have disintegration π = µ(dx)⊗Kx(dy). If φ⊕ψ ∈ L1(π),
Fubini’s theorem for kernels (i.e., tower property of conditional expecta-
tion) states that for a.e. x we have φ(x) + ψ(·) ∈ L1(Kx) and

∫
[φ(x) +

ψ(y)]Kx(dy) ∈ L1(µ), and moreover that
∫∫

[φ(x) + ψ(y)]Kx(dy)µ(dx) =∫
φ⊕ ψ π(dx, dy).

Clearly
∫
[φ(x) + ψ(y)]Kx(dy) = φ(x) +

∫
ψ(y)Kx(dy) =: φ(x) + Ψ(x).

On the other hand, the fact that this sum is in L1(µ) does not imply that φ
(or Ψ) is µ-integrable on its own.

The situation is different for the particular coupling π = µ ⊗ ν used in
the proof of Lemma 2.21. As the kernel Kx ≡ ν does not depend on x,
the above function Ψ(x) :=

∫
ψ(y) ν(dy) cannot depend on x. The constant

a = Ψ(x) must be finite, because φ(x)+Ψ(x) must be finite µ-a.s. Now, the
fact that φ+ a ∈ L1(µ) indeed tells us that φ ∈ L1(µ).

The above proof of Lemma 2.21 through Corollary 1.13 is short yet some-
what indirect. Next, we offer an alternate argument.

Lemma 2.23. Let π ∈ Π(µ, ν) and log dπ
dR = φ⊕ψ R-a.s. for some measur-

able functions φ : X → [−∞,∞) and ψ : Y → [−∞,∞). If

(φ⊕ ψ)+ ∈ L1(µ⊗ ν),

then φ ∈ L1(µ) and ψ ∈ L1(ν). Moreover, µ(φ) + ν(ψ) = H(π|R).

Proof. We have Eπ[(φ⊕ ψ)−] <∞ as φ⊕ ψ is the log-density of π; in fact,
Eπ[φ ⊕ ψ] = H(π|R) ≥ 0. In view of our assumption, Lemma 2.18 then
guarantees that Eµ⊗ν [φ⊕ ψ] = Eπ[φ⊕ ψ] = H(π|R) ≥ 0. In particular, we
also have (φ ⊕ ψ)− ∈ L1(µ ⊗ ν). Thus φ ⊕ ψ ∈ L1(µ ⊗ ν) which by Fubini
implies φ ∈ L1(µ) and ψ ∈ L1(ν); cf. Remark 2.22.

Another Proof of Lemma 2.21. Let µ ⊗ ν ∈ Πfin(µ, ν) and let π ∈ Π(µ, ν)
satisfy log dπ

dR = φ⊕ ψ R-a.s. Then Eµ⊗ν [(φ⊕ ψ)+] <∞ by Lemma 1.4 (a),
so that Lemma 2.23 yields φ ∈ L1(µ) and ψ ∈ L1(ν).
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3 Duality for Static Schrödinger Bridges

In this section, we characterize the Schrödinger potentials φ∗, ψ∗ as the so-
lution to a “dual” optimization problem. Let (X, µ) and (Y, ν) be probability
spaces. We fix a reference measure R ∈ P(X × Y) and assume that there
exists π∗ ∈ Π(µ, ν) with a density of the form

dπ∗
dR

= eφ∗⊕ψ∗ R-a.s. where φ∗ ∈ L1(µ), ψ∗ ∈ L1(ν). (3.1)

By Corollary 2.3, this implies that H(π∗|R) = µ(φ∗) + ν(ψ∗) <∞ and that
π∗ = argminΠ(µ,ν)H( · |R) is the unique Schrödinger bridge. We have seen
in Theorem 2.1 (a) how (3.1) is necessarily satisfied when R ∼ µ ⊗ ν and
µ⊗ ν ∈ Πfin(µ, ν), but those conditions will not be needed directly.

The following fact, sometimes called weak duality, is the first half of the
duality relation.

Lemma 3.1. Let π ∈ Π(µ, ν) and (φ,ψ) ∈ L1(µ)× L1(ν). Then

H(π|R) ≥ µ(φ) + ν(ψ)−
∫
eφ⊕ψ dR+ 1.

Proof. Let π ∈ Π(µ, ν) and Φ ∈ L1(π). As in (1.13), Fenchel’s inequality
yields α logα− α ≥ βα− eβ , or equivalently

α logα− βα ≥ α− eβ for all α ≥ 0, β ∈ R. (3.2)

Write Z = dπ/dR. Using (3.2) with α = Z(x, y) and β = Φ(x, y) yields the
inequality in

H(π|R) =
∫
Z logZ dR =

∫
ΦZ dR+

∫
(Z logZ − ΦZ) dR

≥
∫

ΦZ dR+

∫
(Z − eΦ) dR =

∫
Φ dπ −

∫
eΦ dR+ 1.

If Φ = φ⊕ ψ for φ ∈ L1(µ) and ψ ∈ L1(ν), then
∫
Φ dπ = µ(φ) + ν(ψ) as π

is a coupling. The claim follows.

The next result shows that the Schrödinger potentials φ∗, ψ∗ are the
maximizers for the concave dual problem

sup
φ∈L1(µ), ψ∈L1(ν)

G(φ,ψ), G(φ,ψ) := µ(φ) + ν(ψ)−
∫
eφ⊕ψ dR+ 1 (3.3)

and that there is no “duality gap” between the primal (entropy minimization)
problem and the dual problem.
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Theorem 3.2 (Duality). Let (3.1) hold.12 We have

inf
π∈Π(µ,ν)

H(π|R) = sup
φ∈L1(µ), ψ∈L1(ν)

µ(φ) + ν(ψ)−
∫
eφ⊕ψ dR+ 1, (3.4)

the supremum is attained by the Schrödinger potentials (φ∗, ψ∗), and

H(π∗|R) = inf
π∈Π(µ,ν)

H(π|R) = µ(φ∗) + ν(ψ∗).

The maximizers are unique in the sense that if (φ,ψ) are other maximizers,
then φ⊕ ψ = φ∗ ⊕ ψ∗ R-a.s.13

Proof. The inequality “≥” in (3.4) follows from Lemma 3.1. On the other
hand, (3.1) yields

H(π∗|R) =
∫

(φ∗ ⊕ ψ∗) dπ∗ = µ(φ∗) + ν(ψ∗)

and ∫
eφ∗⊕ψ∗ dR =

∫
1 dπ∗ = 1,

so that equality is attained in (3.4) for π∗, φ∗, ψ∗. This shows (3.4), that
(φ∗, ψ∗) are maximizers, and also that H(π∗|R) = µ(φ∗)+ν(ψ∗). Uniqueness
follows from the strict concavity of the dual problem.

Remark 3.3. An alternate way to write a dual problem is

sup
φ∈L1(µ), ψ∈L1(ν)

µ(φ) + ν(ψ)− log

∫
eφ⊕ψ dR. (3.5)

Lemma 3.1 and Theorem 3.2 apply to this dual problem without changes.
One way to obtain the weak duality for (3.5) is to recall (1.1) which, with
ϕ := φ ⊕ ψ, already yields H(π|R) ≥ µ(φ) + ν(ψ) − log

∫
eφ⊕ψ dR for all

bounded φ,ψ. This extends to integrable φ,ψ by a dominated convergence
argument, and now the analogue of Theorem 3.2 follows as before.

Remark 3.4 (Euler–Lagrange). The Schrödinger equations (SE1)–(SE2) in
Section 2.1 can be interpreted as the Euler–Lagrange equations of the con-
cave maximization problem (3.3); i.e., as the variational first-order condition
for optimality. To see this, fix φ ∈ L1(µ), ψ ∈ L1(ν) and let µ′ be the first

12The integrability condition can be weakened to (φ∗⊕ψ∗)
+ ∈ L1(µ⊗ν) by Lemma 2.23.

13If R ∼ µ ⊗ ν, this implies that φ∗, ψ∗ are a.s. unique up to an additive constant; cf.
Corollary 2.12.
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marginal of the measure dπ(φ,ψ) := eφ⊕ψ dR. Consider a bounded measur-
able function φ0 : X → R and ε ∈ R, then

G(φ,ψ)−G(φ+ εφ0, ψ) =

∫
(eεφ0 − 1) dπ(φ,ψ)− εµ(φ0)

=

∫
(eεφ0 − 1) dµ′ − εµ(φ0)

= ε[µ′(φ0)− µ(φ0)] + o(ε).

If φ = argmaxG(·, ψ), we must have G(φ,ψ) − G(φ + εφ0, ψ) ≥ 0, hence
µ′(φ0) = µ(φ0) for all bounded φ0. It follows that µ′ = µ, or equivalently
that φ solves (SE1). Similarly, (SE2) is the first-order condition for ψ =
argmaxG(φ, ·).

4 Entropic Optimal Transport

Let (X, µ) and (Y, ν) be probability spaces and Π(µ, ν) the set of couplings
on the product X×Y. We also fix a probability measure P ∈ P(X×Y); it can
be arbitrary for now but will soon be chosen as the product P = µ⊗ν. Given
a measurable “cost” function c : X× Y → (−∞,∞] with P{c <∞} > 0, the
entropic optimal transport (or EOT) problem with regularization parameter
ε > 0 is

Cε = Cε(µ, ν, c) = inf
π∈Π(µ,ν)

∫
c dπ + εH(π|P ). (εEOT)

For simplicity, we assume for the moment that c is uniformly bounded from
below, so that the terms on the right-hand side are always well-defined
in (−∞,∞]. Dividing (εEOT) by ε transforms it into a similar problem
with ε = 1 and cost function c/ε,

Cε(µ, ν, c) = εC1(µ, ν, c/ε),

and moreover these problems have the same minimizers.14 For our basic
considerations, it thus suffices to consider ε = 1, simplifying the notation:

C1 = C1(µ, ν, c) = inf
π∈Π(µ,ν)

∫
c dπ +H(π|P ). (EOT)

As c is bounded from below, e−c is bounded and in particular

e−c ∈ L1(P ), (4.1)
14However, in contrast to the unregularized transport problem, there is no simple rela-

tion between C1(µ, ν, c/ε) and C1(µ, ν, c) or between the corresponding minimizers.
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so we can introduce the auxiliary reference measure R ∈ P(X× Y) via

dR := α−1e−c dP = e−(c+logα) dP, α :=

∫
e−c dP > 0. (4.2)

We note that R≪ P and moreover R ∼ P if and only if c <∞ P -a.s.
For π ∈ P(X× Y) with π ≪ R, we have

H(π|R) =
∫

log

(
dπ

dR

)
dπ =

∫
log

(
dπ

dP

dP

dR

)
dπ

= H(π|P ) +
∫

log (αec) dπ =

∫
c dπ +H(π|P ) + logα.

This identity extends to arbitrary π ∈ P(X× Y); in brief,

F (π) :=

∫
c dπ +H(π|P ) = H(π|R)− logα, (4.3)

showing that the entropic transport problem (EOT) is equivalent to the static
Schrödinger bridge problem for R:

C1 = inf
π∈Π(µ,ν)

H(π|R)− logα (4.4)

and both problems have the same minimizers. If
∫
e−c dP = 1, the problems

are identical.
Using the notation Πfin(µ, ν) for couplings with finite entropy H( · |R)

as in Section 2, we also see that

π ∈ Πfin(µ, ν) ⇐⇒ F (π) <∞ ⇐⇒ c ∈ L1(π) and H(π|P ) <∞.
(4.5)

We have reduced (EOT) to the Schrödinger bridge problem. Conversely,
starting with any probability measureR≪ P , we can introduce a measurable
function c : X× Y → (−∞,∞] with P{c <∞} > 0 via

c(x, y) := − log
dR

dP
.

Then α =
∫
e−c dP = 1 and we see that the Schrödinger bridge problem is

also a particular case of (EOT), as least when c is bounded from below. To
remove the latter restriction, we extend (EOT) as follows.15

15In most cases of interest, the cost function c is bounded from below and finite-valued,
like the quadratic cost c(x, y) = ∥x − y∥2 on Rd × Rd. We consider more general cases
mainly have the full equivalence with the Schrödinger bridge formulation.
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Remark 4.1. We extend (EOT) to costs c which are not necessarily bounded
from below, but instead merely satisfy (4.1). There is a slight delicacy re-
garding the right-hand side of (EOT), as it might read −∞+∞. We define

F (π) :=

∫
c dπ + εH(π|P ) :=

∫ (
c+ log

dπ

dP

)
dπ.

The latter integral is always well-defined in (−∞,∞]; indeed, it is equal to
H(π|R)−logα. Thus we avoid the expression −∞+∞ and more importantly,
(4.3) remains valid for all π ∈ P(X×Y). More generally, all the considerations
above (and below) remain valid for this extension, except possibly the last
part of (4.5)

While we have considered a general P so far, let us now specialize to
P = µ⊗ ν. Then (4.5) for the product coupling π = µ⊗ ν becomes

µ⊗ ν ∈ Πfin(µ, ν) ⇐⇒ c ∈ L1(µ⊗ ν). (4.6)

In particular, the condition µ ⊗ ν ∈ Πfin(µ, ν), or equivalently (2.2), boils
down to a standard integrability condition on the cost function.

The next result translates Theorem 2.1 to the present setting; for part (a)
our proof thus assumes that (X, µ) and (Y, ν) are separable.

Theorem 4.2 (Structure Theorem for EOT). Let C1 <∞. Then there is a
unique minimizer π∗ for the entropic optimal transport problem (EOT).

(a) Let c < ∞ µ ⊗ ν-a.s. Then π∗ ∼ µ ⊗ ν and there are measurable
functions φ : X → R, ψ : Y → R, called EOT potentials, such that

dπ∗
d(µ⊗ ν)

= eφ⊕ψ−c µ⊗ ν-a.s.

The EOT potentials are a.s. unique up to an additive constant.16 If
c ∈ L1(µ⊗ ν), then φ ∈ L1(µ) and ψ ∈ L1(ν).

(b) Conversely, let π0 ∈ Π(µ, ν) admit a density of the form

dπ0
d(µ⊗ ν)

= eφ⊕ψ−c µ⊗ ν-a.s.

for some functions φ : X → [−∞,∞), ψ : Y → [−∞,∞). Then π0 is
the minimizer π∗ and φ,ψ are the EOT potentials.

16I.e., if φ′, ψ′ are potentials, then φ′ = φ+a µ-a.s. and ψ′ = ψ−a ν-a.s. for some a ∈ R.
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Proof. Taking into account (4.2), (4.3) and (4.6), this is a direct application
of Theorem 2.1 and Corollary 2.4. In (b), we did not require explicitly that
φ,ψ are measurable. Indeed, φ⊕ψ = c+log dπ0

d(µ⊗ν) is necessarily measurable,
and hence φ and ψ are (a.s.) measurable due to Remark 2.13.

As a consequence of Theorem 4.2, π∗ can be also be characterized by a
cyclical invariance property as in Section 2.2. We do not detail this here,
but instead state the definition in Section 5.3 where it is also applied.

Remark 4.3. The EOT potentials in Theorem 4.2 differ from the Schrödinger
potentials in Theorem 2.1 by a constant. In the literature, both are often
called Schrödinger potentials, a slight inconsistency. Indeed, if φ,ψ are the
Schrödinger potentials as in Theorem 2.1,

dπ∗
d(µ⊗ ν)

=
dπ∗
dR

dR

d(µ⊗ ν)
= e(φ⊕ψ−logα)−c,

so that the sum of EOT potentials in the sense of Theorem 4.2 is shifted
by logα. On the other hand, this is convenient as it corresponds exactly to
the shift in (4.4). For instance, the duality in Theorem 4.7 below takes the
same form as Theorem 3.2.

In contrast to a scaling of the cost as discussed below (εEOT), the next
two remarks treat transformations that are separable and hence do not affect
the optimizers. A simple transformation is to shift the cost c by a function
of x or y alone; in particular, this allows us to relax the integrability condi-
tion (4.1).

Remark 4.4 (Shift of Cost). Let c1 ∈ L1(µ) and c2 ∈ L1(ν). Then

C1(µ, ν, c+ c1 ⊕ c2) = C1(µ, ν, c) + µ(c1) + ν(c2)

and, if finite, both problems have the same minimizer π∗ ∈ Π(µ, ν).

Sometimes the entropic optimal transport problem is considered with
entropy relative to a measure different from the product of the marginals.
As long as that measure is also product, it still suffices to study (EOT).

Remark 4.5 (Different Reference). Let µ′ ∈ P(X), ν ′ ∈ P(Y) and consider

C′
1 := inf

π∈Π(µ,ν)

∫
c dπ +H(π|µ′ ⊗ ν ′). (4.7)

Then
C′
1 = C1 +H(µ|µ′) +H(ν|ν ′)

34



and if C′
1 is finite, both problems have the same minimizer π∗ ∈ Π(µ, ν).

More generally, we have

H(π|µ′ ⊗ ν ′) = H(π|µ⊗ ν) +H(µ|µ′) +H(ν|ν ′) for all π ∈ Π(µ, ν).

Indeed, for π ∈ Π(µ, ν) with π ≪ µ′⊗ν ′, we necessarily have µ≪ µ′ and
ν ≪ ν ′. This implies µ⊗ ν ≪ µ′ ⊗ ν ′ and then

H(π|µ′ ⊗ ν ′) =

∫
log

(
dπ

d(µ⊗ ν)

d(µ⊗ ν)

d(µ′ ⊗ ν ′)

)
dπ

= H(π|µ⊗ ν) +

∫ [
log

(
dµ

dµ′
(x)

)
+ log

(
dν

dν ′
(y)

)]
π(dx, dy)

= H(π|µ⊗ ν) +H(µ|µ′) +H(ν|ν ′).

Whereas if π ̸≪ µ′ ⊗ ν ′, then either π ̸≪ µ⊗ ν or µ ̸≪ µ′ or ν ̸≪ ν ′, so that
both sides are infinite.

We can note that Remark 4.4 and Remark 4.5 are two sides of the same
medal: if H(µ|µ′) < ∞ and H(ν|ν ′) < ∞, then c1 := log dµ

dµ′ ∈ L1(µ)

and c2 := log dν
dν′ ∈ L1(ν). For π ∈ Π(µ, ν) we thus have

∫
c1 ⊕ c2 dπ =

H(µ|µ′)+H(ν|ν ′), so that (4.7) can be seen as the problem (EOT) with our
usual entropy relative to µ⊗ ν but changed cost c̃ := c+ c1 ⊕ c2.

In the context of entropic optimal transport, the general inequality of
Corollary 1.12 is strengthened to an equality: the suboptimality of a cou-
pling π (in terms of cost) is exactly given by its entropy relative to π∗. If we
think of the entropy as a notion of distance, this reflects the strict convexity
of entropic optimal transport in a quantitative way.

Proposition 4.6. Let C1 < ∞ and c < ∞ µ ⊗ ν-a.s. Denote F (π) :=∫
c dπ +H(π|µ⊗ ν) as in (4.3). The minimizer π∗ of (EOT) satisfies

F (π)− F (π∗) = H(π|π∗) for all π ∈ Π(µ, ν) with F (π) <∞.

Proof. In view of Theorem 4.2 and Proposition 2.17, Corollary 1.12 yields
H(π|π∗) = H(π|R)−H(π∗|R) and we conclude via (4.3).

Finally, we translate our duality results to the current setting. For sim-
plicity, we use the slightly less general condition c ∈ L1(µ⊗ ν).

Theorem 4.7 (EOT Duality). Let c ∈ L1(µ⊗ ν). Then

C1 = sup
φ∈L1(µ), ψ∈L1(ν)

µ(φ) + ν(ψ)−
∫
eφ⊕ψ−c d(µ⊗ ν) + 1, (4.8)
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the supremum is attained by the EOT potentials φ∗ ∈ L1(µ), ψ∗ ∈ L1(ν),
and

C1 = µ(φ∗) + ν(ψ∗). (4.9)

The maximizers are a.s. unique up to an additive constant.

Proof. In view of Theorem 4.2 and µ ⊗ ν ∼ R, c ∈ L1(µ ⊗ ν) implies the
assumption of Theorem 3.2. The claims then follow from Theorem 3.2 and
Theorem 2.1.

Remark 4.8. (a) In Theorem 4.7, the assumption c ∈ L1(µ⊗ ν) guarantees
that the minimizer π∗ ∈ Π(µ, ν) exists and has a density of the form

dπ∗
d(µ⊗ ν)

= eφ∗⊕ψ∗−c µ⊗ ν-a.s. with φ∗ ∈ L1(µ), ψ∗ ∈ L1(ν). (4.10)

As in Theorem 3.2, we can omit the assumption c ∈ L1(µ⊗ν) and directly as-
sume (4.10) instead; moreover, we can weaken the integrability requirement
to (φ∗ ⊕ ψ∗)

+ ∈ L1(µ⊗ ν).
(b) As in Remark 3.3, Theorem 4.7 also holds for the dual problem

sup
φ∈L1(µ), ψ∈L1(ν)

µ(φ) + ν(ψ)− log

∫
eφ⊕ψ−c d(µ⊗ ν).

4.1 Regularity of Potentials

Next, we exemplify how the Schrödinger equations can be used to establish
regularity properties of the potentials. As in Theorem 4.2 (a), let φ,ψ be the
EOT potentials such that

dπ∗
d(µ⊗ ν)

= eφ⊕ψ−c µ⊗ ν-a.s.

As in Section 2.1, the fact that π∗ is a probability measure with marginals µ
and ν implies the Schrödinger equations

φ(x) = − log

∫
eψ(y)−c(x,y) ν(dy) µ-a.s.,

ψ(y) = − log

∫
eφ(x)−c(x,y) µ(dx) ν-a.s.

(4.11)

A priori, φ,ψ are only defined µ-a.s. and ν-a.s., respectively. To discuss
pointwise properties such as continuity, we would like to define the potentials
at every point, not only almost-surely. Indeed, we can choose natural versions
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of φ,ψ defined everywhere on X,Y by using the right-hand sides as of (4.11)
as pointwise definitions for the left-hand sides. With that choice, (4.11) holds
everywhere on X× Y, even without the a.s. qualifiers.

As the Schrödinger equations express one (exponentiated) potential as
a convolution of the other potential with the kernel e−c(x,y), they can be
used to study how the potentials inherit regularity properties from c (e.g.,
[5, 13, 27, 28]). Below, we give two basic examples of such a priori estimates;
one could similarly estimate derivatives, etc. We mention that (4.11) can
be seen as an analogue of the c-conjugacy relation between the Kantorovich
potentials in unregularized optimal transport (e.g., [35]) which has been used
used extensively to derive regularity properties in that context.

Lemma 4.9. Let c ∈ L1(µ⊗ν) and let φ,ψ be versions of the EOT potentials
satisfying (4.11) everywhere as well as µ(φ) ≥ 0 and ν(ψ) ≥ 0. Then

inf
y∈Y

[
c(x, y)− ψ(y)

]
≤ φ(x) ≤

∫
c(x, y) ν(dy),

inf
x∈X

[
c(x, y)− φ(x)

]
≤ ψ(y) ≤

∫
c(x, y)µ(dx)

for all x ∈ X and y ∈ Y. If c is bounded, then

a ≤ φ ≤ b, a ≤ ψ ≤ b

for a = −∥c−∥∞ − ∥c+∥∞ and b = ∥c+∥∞. Whereas if c is merely bounded
from below and ec ∈ L1(µ⊗ ν), then

ã ≤ φ, ã ≤ ψ

for ã = −∥c−∥∞ − log ∥ec∥L1(µ⊗ν).

Proof. Using (4.11), Jensen’s inequality and ν(ψ) ≥ 0,

φ(x) = − log

∫
eψ(y)−c(x,y) ν(dy)

≤
∫

[−ψ(y) + c(x, y)] ν(dy) ≤
∫
c(x, y) ν(dy).

For the lower bound, (4.11) yields

φ(x) ≥ − log

∫
esupy∈Y[ψ(y)−c(x,y)] ν(dy)

= − sup
y∈Y

[
ψ(y)− c(x, y)

]
= inf

y∈Y

[
c(x, y)− ψ(y)

]
.
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The proof of the first claim for ψ is symmetric.
If c is bounded, the above upper bounds imply φ,ψ ≤ ∥c+∥∞. Using

this in the lower bound then also yields the lower bound a. If c is merely
bounded from below, we have

e−φ(x) =

∫
eψ(y)−c(x,y) ν(dy) ≤ e∥c

−∥∞
∫
eψ(y) ν(dy),

and for the latter integral, the upper bound and Jensen’s inequality imply∫
eψ(y) ν(dy) ≤

∫
e
∫
c(x,y)µ(dx)ν(dy) ≤

∫
ecd(µ⊗ ν).

The claimed lower bound ã follows by taking logarithm.

Remark 4.10. In Lemma 4.9, the condition that µ(φ) ≥ 0 and ν(ψ) ≥ 0
depends on the chosen normalization. If

∫
e−cd(µ⊗ν) ≤ 1, then (4.9) implies

that the condition holds for two popular choices, the normalization µ(φ) = 0
and the symmetric normalization µ(φ) = ν(ψ).

Let ω : R+ → R+ be a modulus of continuity; i.e., continuous at 0 with
ω(0) = 0. In the following lemma, we assume that some metrics dX, dY are
given on X,Y.

Lemma 4.11. Let φ,ψ be versions of the EOT potentials satisfying (4.11).
If c is uniformly continuous with modulus ω in both variables, then φ,ψ are
uniformly continuous with the same modulus ω.

Proof. Let x1, x2 ∈ X satisfy φ(x1) ≥ φ(x2). Then

|φ(x1)− φ(x2)|

= log

∫
eψ(y)−c(x2,y) ν(dy)− log

∫
eψ(y)−c(x1,y) ν(dy)

= log

∫
ec(x1,y)−c(x2,y)+ψ(y)−c(x1,y) ν(dy)− log

∫
eψ(y)−c(x1,y) ν(dy)

≤ log

[
esupy∈Y |c(x1,y)−c(x2,y)|

∫
eψ(y)−c(x1,y) ν(dy)

]
− log

∫
eψ(y)−c(x1,y) ν(dy)

= sup
y∈Y

|c(x1, y)− c(x2, y)| ≤ ω(dX(x1, x2)).

The case φ(x1) ≤ φ(x2) follows by symmetry and the proof for ψ is analo-
gous.
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Lemma 4.11 shows in particular that the potentials can inherit a Lips-
chitz constant from c. On the other hand, uniform continuity is a strong
assumption if the spaces X,Y are unbounded. We remark that the proof of
Lemma 4.11 can be modified to alleviate this, for instance if a decay condi-
tion on the tails of µ, ν is given. As an example, c(x, y) = −x · y on Rd×Rd
is not uniformly continuous (this is the quadratic cost ∥x − y∥2/2 after ap-
plying Remark 4.4), but assuming the that marginals are subgaussian, the
conjugacy relations still imply regularity of the potentials; cf. [27].

For ease of reference, we conclude this section by explicitly stating some
formulas for the problem (εEOT) with regularization parameter ε ̸= 1.

Remark 4.12 (Rescaled EOT Potentials). Let Cε < ∞, then Theorem 4.2
applied to c̃ := c/ε immediately yields that the solution πε of (εEOT) satisfies
dπε

d(µ⊗ν) = eφ⊕ψ−c/ε µ ⊗ ν-a.s. It is sometimes convenient to consider the
rescaled EOT potentials17 φε := εφ and ψε := εψ, for which the optimal
density takes the form

dπε
d(µ⊗ ν)

= e
φε⊕ψε−c

ε µ⊗ ν-a.s. (4.12)

There is no benefit regarding the Schrödinger equations, which now read

φε(x) = −ε log
∫
e
ψε(y)−c(x,y)

ε ν(dy) µ-a.s.,

ψε(y) = −ε log
∫
e
φε(x)−c(x,y)

ε µ(dx) ν-a.s.
(4.13)

On the other hand, the regularity results take the same form as for ε = 1:
after replacing (φ,ψ) by (φε, ψε), Lemma 4.9 and Lemma 4.11 hold verbatim.
This may be a first hint that (φε, ψε) are at a natural scale. If c ∈ L1(µ⊗ν),
the duality can be stated as

Cε = sup
φ∈L1(µ), ψ∈L1(ν)

µ(φ) + ν(ψ)− ε

∫
e
φ⊕ψ−c

ε d(µ⊗ ν) + ε (4.14)

with the supremum now attained by the rescaled EOT potentials (φε, ψε).
Thus

Cε = µ(φε) + ν(ψε), (4.15)

again taking the same form as for ε = 1.
Another motivation to use the rescaled potentials will be detailed in

Section 5.4: in the limit ε → 0, the potentials without rescaling would
17In the literature, all these functions are generally called Schrödinger potentials or

merely potentials. We are adding some terminology to differentiate them more clearly.
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blow up, whereas (φε, ψε) converge to their analogues in the unregularized
transport problem (the Kantorovich potentials). This again suggests that
(φε, ψε) are at a natural scale.

5 Convergence to Optimal Transport

As in Section 4, let (X, µ) and (Y, ν) be probability spaces, Π(µ, ν) the set of
couplings and P ∈ P(X×Y). Moreover, c : X×Y → (−∞,∞] is measurable
with P{c <∞} > 0. In this section we study the limit ε→ 0 of

Cε = inf
π∈Π(µ,ν)

∫
c dπ + εH(π|P ). (εEOT)

Under suitable conditions, we expect convergence to the (unregularized) op-
timal transport problem that corresponds to ε = 0,

C0 = inf
π∈Π(µ,ν)

∫
c dπ. (OT)

Specifically, we are interested in the convergence of three objects: the value
functions Cε, the optimal couplings πε, and the rescaled EOT potentials
(φε, ψε).

We first recall some notions from optimal transport. The dual optimal
transport problem is18

sup
φ∈L1(µ), ψ∈L1(ν), φ⊕ψ≤c

µ(φ) + ν(ψ), (5.1)

and we call any solution (φ0, ψ0) a pair of Kantorovich potentials. The
optimal transport problem also has an analogue of the cyclical invariance
property, but here the definition refers to the support of the coupling. A set
Γ ⊂ X× Y is called c-cyclically monotone if for all k ≥ 1,

k∑
i=1

c(xi, yi) ≤
k∑
i=1

c(xi, yi+1) for (xi, yi) ∈ Γ, 1 ≤ i ≤ k, (5.2)

with the cyclical convention yk+1 := y1. A measure π is called c-cyclically
monotone if it is concentrated on a c-cyclically monotone set Γ. We will
only use this notion when the cost function c is continuous, and then it

18More precisely, the supremum is taken over φ ∈ L1(µ), ψ ∈ L1(ν) admitting versions
with φ ⊕ ψ ≤ c everywhere on X × Y. If X,Y are Polish and c is upper semicontinuous,
that holds as soon as φ⊕ ψ ≤ c µ⊗ ν-a.s.
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is equivalent to require that the support sptπ be c-cyclically monotone,
where sptπ is the smallest closed set A ⊂ X× Y with π(A) = 1.

The optimal transport problem lacks the general smoothness of (εEOT),
hence the regularity properties of c will be more important in this section. If
X,Y are Polish spaces and c ∈ L1(µ⊗ν) is lower semicontinuous and bounded
from below, the following results are standard (see [35, Theorem 5.10, Re-
mark 5.14]): (OT) admits a minimizer (“optimal transport”) π0 ∈ Π(µ, ν),
the dual problem (5.1) admits Kantorovich potentials (φ0, ψ0), and we have
the optimal transport duality

C0 = µ(φ0) + ν(ψ0). (5.3)

Moreover, π ∈ Π(µ, ν) is an optimal transport if and only if it is c-cyclically
monotone. The problems (OT) and (5.1) are linear, hence uniqueness does
not hold in general. Nevertheless, uniqueness is known for many important
examples (see [35]).

For our goal of connecting (εEOT) with (OT), the following example
illustrates that lower semicontinuity of c alone is not sufficient.

Example 5.1. Consider the lower semicontinuous cost function

c(x, y) =

{
1, x ̸= y,

0, x = y

with marginals µ = ν = Unif[0, 1] and P = µ ⊗ ν. Then any π ∈ Π(µ, ν)
with π ≪ P has transport cost

∫
c dπ = 1. On the other hand, the identical

coupling π0 = µ⊗xδx (which corresponds to the transport map T (x) = x) has
vanishing transport cost, and it is the unique optimal transport. Moreover,
any Kantorovich potentials φ0, ψ0 of (OT) must satisfy φ0(x) + ψ0(x) = 0
µ-a.s. We observe that

(i) Cε ≡ 1 does not converge to C0 = 0,

(ii) πε ≡ µ⊗ ν does not converge to π0,

(iii) the rescaled EOT potentials φε⊕ψε ≡ 1 do not converge to Kantorovich
potentials.

The disconnect between the problems is apparent: the optimal transport π0
exploits the smaller values of c on the diagonal, whereas the regularized
problem does not “see” the diagonal (or any µ ⊗ ν-nullsets), hence for this
problem the cost c is equivalent to a constant cost c̃ ≡ 1.
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We are mainly interested in continuous costs c and entropy relative to
P = µ⊗ ν in (εEOT). Some basic results can be stated in greater generality
without any additional effort. One restriction we impose throughout is that

c is bounded from below. (5.4)

This ensures that
∫
c dπ is well defined and the transport cost π 7→

∫
c dπ

is weakly lower semicontinuous on Π(µ, ν) when c is lower semicontinuous.
The lower bound can often be relaxed to c ≥ c1 ⊕ c2 ∈ L1(µ) ⊕ L1(ν) by
applying our results to c̃ = c− c1 ⊕ c2 ≥ 0 and using Remark 4.4 as well as
its analogue for optimal transport.

5.1 Convergence of Value Functions

Clearly the value function Cε of (εEOT) is monotone decreasing as ε ≥ 0
decreases, hence limε→0 Cε ≥ C0. Our aim is to show that limε→0 Cε = C0;
that is, we retrieve the value function of (OT) as the regularization parameter
tends to zero. In this section, X,Y are Polish and P ∈ P(X×Y) is arbitrary.

To show that limε→0 Cε = C0, we can work with the primal or the dual
problem. On the primal side, it suffices to show that there exists an almost-
optimal transport with finite entropy as follows.

Lemma 5.2. Suppose that given η > 0, there exists πη ∈ Π(µ, ν) with∫
c dπη ≤ C0 + η and H(πη|P ) <∞. Then limε→0 Cε = C0.

Proof. Given η > 0, we have

Cε ≤
∫
c dπη +H(πη|P ) ≤ C0 + η + εH(πη|P ).

Thus limε→0 Cε ≤ C0 + η, and η > 0 was arbitrary.

There are different ways to produce this almost-optimal transport πη.
One is to take the entropic optimizer πε (which of course has finite entropy)
and check that it is almost-optimal for (OT). This idea is investigated in
Section 5.3. Another idea is to take an optimal transport for (OT) and “smear
it out” such as to ensure finite entropy without affecting the transport cost
too much, which is the approach we present next.

Lemma 5.3 (Block Approximation). Let c be continuous and bounded.
Given η > 0 and π ∈ Π(µ, ν), there exist π̃ ∈ Π(µ, ν) such that∣∣∣∣∫ c dπ̃ −

∫
c dπ

∣∣∣∣ ≤ η and
dπ̃

d(µ⊗ ν)
is bounded.
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Proof. Step 1. We first suppose that π is concentrated on a compact set
K = KX ×KY. Given δ > 0, compactness of KX yields a measurable finite
partition A1, . . . , AN of KX with diamAi ≤ δ, and similarly B1, . . . , BN ′

for KY. Consider the “block approximation”

π̃ :=
∑
i,j

π(Ai ×Bj)µi ⊗ νj , µi := µ(Ai)
−1µ|Ai , νj := ν(Bj)

−1ν|Bj .

Note that π̃ ∈ Π(µ, ν) and dπ̃/d(µ⊗ ν) is bounded (for fixed δ). Moreover,
uniform continuity of c on the compact K implies that

∫
c dπ̃ →

∫
c dπ as

δ → 0; note that both integrals are comparable to
∑

i,j c(xi, yj)π(Ai × Bj)
for arbitrary xi ∈ Ai and yj ∈ Bj .

Step 2. To treat the general case, let δ > 0. As π is tight, we can find a
compact K = KX ×KY such that π(K) > 1− δ. Let

π′ := π|K , π′′ := π − π′.

By Step 1, there is a measure π̃′ having the same marginals as π′ such that
dπ̃′/d(µ ⊗ ν) is bounded and |

∫
c dπ̃′ −

∫
c dπ′| < η. If π′′ ̸= 0, let (µ′′, ν ′′)

be the marginals of π′′ and let π̃′′ be their product coupling

π̃′′ = µ′′(X)−1 µ′′ ⊗ ν ′′.

As c is bounded and π′′(X × Y) < δ, we have
∫
c dπ̃′′ → 0 and

∫
c dπ′′ → 0

for δ → 0. Moreover, dπ̃′′/d(µ ⊗ ν) ≤ µ′′(X)−1. In summary, the coupling
π̃ := π̃′ + π̃′′ ∈ Π(µ, ν) satisfies the assertion.

Corollary 5.4. Let c be continuous and bounded. If H(µ⊗ ν|P ) <∞, then
limε→0 Cε = C0.
Proof. Let η > 0 and π ∈ Π(µ, ν) an optimal transport for (OT). Applying
Lemma 5.3 to π yields π̃ ∈ Π(µ, ν) with

∫
c dπ̃ ≤ C0 + η and dπ̃/d(µ ⊗ ν)

bounded. The latter implies H(π̃|P ) < ∞ due to H(µ ⊗ ν|P ) < ∞, so
Lemma 5.2 applies.

While not needed here, we mention that the block construction can be
used to further quantify the distance between π and π̃. In the proof of
Lemma 5.3, boundedness of c is used for the convergence

∫
c dπ̃′′ → 0. At

least in some cases, a block approximation can also be implemented for
unbounded costs (see [6, 22]). For the present purpose it is not important to
obtain a bounded density; finite entropy is sufficient. But even so, the simple
approximation from Step 2 in the proof is rather crude. Instead, one may
typically have to divide the whole domain into small blocks and carefully
control the resulting entropy. In Sections 5.3 and 5.4 below, we explore a
different route to obtain limε→0 Cε = C0 for unbounded cost: the convergence
of primal and dual optimizers, respectively.
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5.2 Convergence of Optimal Couplings for Finite Entropy

Since πε minimizes the entropy among all couplings having the same (or
smaller) transport cost

∫
c dπ, it is intuitive that the limit as ε → 0 should

have the same property: πε should converge to the optimal transport with
minimal entropy—provided that such a transport exists. The next result
makes this precise. It turns out that the driving ingredient is the conver-
gence Cε → C0 of the value functions (as provided by Corollary 5.4 above or
Theorem 5.10 and Corollary 5.17 below); if that is taken as a primitive, the
analysis falls into the general framework of Section 1 and the conclusions
follow easily in a very general setting. Thus, in this section, X,Y are general
measurable spaces and P ∈ P(X×Y) is arbitrary. We suppose that Cε <∞
for some (and then all) ε > 0 and write Πopt(µ, ν) for the set of all optimal
transports; i.e., all π ∈ Π(µ, ν) with

∫
c dπ = C0.

Theorem 5.5. Suppose that limε→0 Cε = C0. Then the following are equiv-
alent:

(i) limε→0H(πε|P ) <∞,

(ii) (πε) converges in variation and H(limε→0 πε|P ) <∞,

(iii) there exists π ∈ Πopt(µ, ν) with H(π|P ) <∞.

Under those conditions, the limit π∗ = limε πε is the (unique) optimal trans-
port with minimal entropy:

π∗ = argmin
Πopt(µ,ν)

H( · |P ).

Moreover, H(πε|P ) → H(π∗|P ) as well as

H(π∗|πε) → 0 and log
dπε
dP

→ log
dπ∗
dP

in L1(π∗).

Proof. Let πε be the optimizer of (εEOT). The additive form of (εEOT) and
the optimality of the couplings imply that

H(πε|P ) ≤ H(πε′ |P ) and
∫
c dπε ≥

∫
c dπε′ for ε ≥ ε′ > 0. (5.5)

Denote Q := Πopt(µ, ν) and

Qε :=

{
π ∈ Π(µ, ν) :

∫
c dπ ≤

∫
c dπε

}
.
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Then Qε is a closed convex set and πε = argminQε H( · |P ). The second
part of (5.5) implies that Qε ⊃ Qε′ for ε ≥ ε′, and moreover ∩εQε = Q due
to
∫
c dπ ≤

∫
c dπε ≤ Cε → C0 for π ∈ ∩εQε. This puts us in the setting of

Proposition 1.17 which provides all the claims.

The typical applications for Theorem 5.5 concern discrete and semi-
discrete optimal transport (semi-discrete meaning that one marginal is dis-
crete and the other continuous). When both marginals are continuous, typ-
ically all optimal transports are singular with respect to P , and then The-
orem 5.5 only tells us that that (πε) cannot converge in variation. In any
event, we can deduce the following dichotomy about the speed of convergence
Cε → C0.

Corollary 5.6. We have Cε − C0 = O(ε) if and only if (OT) admits an
optimal transport with finite entropy. More precisely,

Cε = C0 + εH(π∗|P ) + o(ε) if π∗ = argmin
Πopt(µ,ν)

H( · |P )

whereas lim ε−1(Cε−C0) = ∞ if (OT) admits no optimal transport with finite
entropy.

Proof. Clearly
∫
c dπε ≥ C0, hence we have the lower bound

Cε − C0
ε

=

∫
c dπε + εH(πε|P )− C0

ε
≥ H(πε|P ). (5.6)

Suppose there is no optimal transport with finite entropy. If Cε → C0, then
Theorem 5.5 applies and yields limH(πε|P ) = ∞, so that (5.6) implies
lim ε−1(Cε − C0) = ∞. If Cε ̸→ C0, then lim ε−1(Cε − C0) = ∞ is trivial.

Otherwise, let π∗ := argminΠopt(µ,ν)H( · |P ) be the optimal transport
with minimal entropy. We have

Cε ≤
∫
c dπ∗ + εH(π∗|P ) = C0 + εH(π∗|P )

and hence the upper bound

Cε − C0
ε

≤ H(π∗|P ). (5.7)

This shows in particular that limε Cε = C0. Hence Theorem 5.5 yields
limεH(πε|P ) = H(π∗|P ) and now the claim follows from (5.6) and (5.7).
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5.3 Weak Convergence of Optimal Couplings

In this section, X,Y are Polish and we study the convergence of (πε) in the
sense of weak convergence. In many continuous examples, (OT) admits a
unique optimal transport π∗ given by a transport map (see [35]) and hence
π∗ ̸≪ µ⊗ ν. On the other hand, πε ≪ µ⊗ ν (at least when P = µ⊗ ν), so
that πε cannot converge to π∗ in variation. By contrast, we shall see that
weak convergence holds under general conditions. As before, P ∈ P(X× Y)
is arbitrary.

As a first step, we recall that Π(µ, ν) is weakly compact. We state a
slightly more general result for families of marginals.

Lemma 5.7. If M ⊂ P(X) and N ⊂ P(Y) are weakly compact, then the set
{π ∈ Π(µ, ν) : µ ∈ M, ν ∈ N} ⊂ P(X× Y) is weakly compact.

Proof. Let δ > 0. By Prokhorov’s theorem there is a compact set KX ⊂ X
with µ(KX) > 1 − δ for all µ ∈ M, and similarly for Y. If π ∈ Π(µ, ν) for
some (µ, ν) ∈ M×N , then π(KX ×KY) ≥ 1− 2δ. By the reverse direction
of Prokhorov’s theorem, this shows that {π ∈ Π(µ, ν) : µ ∈ M, ν ∈ N}
is relatively compact. To see that it is weakly closed, consider a sequence
πn ∈ Π(µn, νn) such that πn → π weakly for some π ∈ P(X × Y). As the
coordinate projection X× Y → X is continuous, it follows that µn converges
weakly to the first marginal µ of π, and µ ∈ M by the closedness of M.
Similarly for the second marginal.

For the fixed marginals (µ, ν), Lemma 5.7 shows in particular that Π(µ, ν)
is weakly compact, and hence the following.

Lemma 5.8. If εn → 0, then (πεn) has a weakly convergent subsequence and
the limit is in Π(µ, ν).

We want to show that this limit is an optimal transport. Two approaches
will be exemplified. The first is straightforward: we take limε→0 Cε = C0 for
granted (e.g., from Corollary 5.4) and deduce optimality from the lower
semicontinuity of the transport cost.

Proposition 5.9. Let c be lower semicontinuous and limε→0 Cε = C0 < ∞.
If εn → 0 and limn πεn = π weakly, then π ∈ Π(µ, ν) is an optimal transport.
If (OT) admits a unique optimal transport π∗, it follows that limε→0 πε = π∗
weakly.

Proof. As c is lower semicontinuous and bounded from below, Portmanteau’s
theorem yields ∫

c dπ ≤ lim inf

∫
c dπεn ≤ lim inf Cεn = C0.
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On the strength of Lemma 5.8, the second assertion is a consequence.

The second approach is to show optimality of the limit intrinsically: we
show that any weak limit must be c-cyclically monotone, hence an opti-
mal transport. Under a mild integrability condition, this also implies that
limε→0 Cε = C0. In the remainder of this section, we specialize to P = µ⊗ ν.
The main result reads as follows.

Theorem 5.10. Let P = µ⊗ ν and let c be continuous with c ≤ c1 ⊕ c2 for
some c1 ∈ L1(µ) and c2 ∈ L1(ν).19

(a) We have limε→0 Cε = C0.

(b) If εn → 0 and limn πεn = π weakly, then π ∈ Π(µ, ν) is an optimal
transport.

(c) If (OT) admits a unique optimal transport π∗, then limε→0 πε = π∗
weakly.

To prove the key part (b), we use the intrinsic characterization of πε
by cyclical invariance. Recalling that (εEOT) corresponds to a reference
measure dR ∝ e−c/εdP in the setting of Schrödinger bridges, Definition 2.6
translates as follows.

Definition 5.11. A coupling π ∈ Π(µ, ν) is called (c, ε)-cyclically invariant
if π ∼ P and its density admits a version dπ

dP : X× Y → (0,∞) such that

k∏
i=1

dπ

dP
(xi, yi) = exp

(
− 1

ε

[ k∑
i=1

c(xi, yi)−
k∑
i=1

c(xi, yi+1)

]) k∏
i=1

dπ

dP
(xi, yi+1)

(5.8)
for all k ∈ N and (xi, yi)

k
i=1 ⊂ X× Y, where yk+1 := y1.

We observe that the exponent contains the sums from the definition (5.2)
of c-cyclical monotonicity. If their difference is positive, the right-hand side
of (5.8) decays exponentially fast as ε → 0. In [1], that observation is
exploited to derive a large deviations principle for (πε) as ε → 0. Here, we
only use the fact that the right-hand side tends to zero.

Proposition 5.12. Let c be continuous and let πε be (c, ε)-cyclically invari-
ant for ε > 0. If εn → 0 and limπεn = π weakly, then π ∈ Π(µ, ν) is
c-cyclically monotone. In particular, π is an optimal transport as soon as
C0 <∞.

19The theorem remains valid if c ≤ c1⊕c2 is replaced by c ∈ L1(µ⊗ν); cf. Corollary 5.17
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The proof is based on the following lemma capturing the aforementioned
exponential decay.

Lemma 5.13. Let k ≥ 2 and δ ≥ 0. Define

Ak(δ) :=

{
(xi, yi)

k
i=1 ∈ (X× Y)k :

k∑
i=1

c(xi, yi)−
k∑
i=1

c(xi, yi+1) ≥ δ

}
.

Then πkε :=
∏k
i=1 πε(dxi, dyi) ∈ P((X× Y)k) satisfies

πkε (Ak(δ)) ≤ e−δ/ε for all ε > 0. (5.9)

Proof. Set Z = dπε/dP . Using (5.8), we have for P k-a.e. (xi, yi)ki=1 ∈ A that∏
Z(xi, yi) = exp

{
−ε−1

[∑
c(xi, yi)−

∑
c(xi, yi+1)

]}∏
Z(xi, yi+1)

≤ e−δ/ε
∏

Z(xi, yi+1).

Let Ā :=
{
(xi, yi+1)

k
i=1 : (xi, yi)

k
i=1 ∈ A

}
. Integrating over A with respect

to P k =
∏
P (dxi, dyi) =

∏
P (dxi, dyi+1) yields

πkε (A) ≤ e−δ/επkε (Ā) ≤ e−δ/ε,

where we have used that πkε is a probability measure.

Proof of Proposition 5.12. We show that sptπ is a c-cyclically invariant set.
Suppose for contradiction that there are (xi, yi) ∈ sptπ, 1 ≤ i ≤ k with∑

i c(xi, yi) >
∑

i c(xi, yi+1). By continuity of c there exist δ > 0 and open
neighborhoods Ui ∋ (xi, yi) such that

∑
i c(x̃i, ỹi) ≥ δ+

∑
i c(x̃i, ỹi+1) for all

(x̃i, ỹi) ∈ Ui. Moreover, π(Ui) > 0 and hence lim infn πεn(Ui) > 0. On the
other hand, U1 × · · · × Uk ⊂ Ak(δ) implies πkεn(U1 × · · · × Uk) → 0 by (5.9),
a contradiction.

The following fact will be used to derive limε→0 Cε = C0 from the conver-
gence of optimizers; i.e., to derive (a) from (b) in Theorem 5.10.

Lemma 5.14. Let |c| ≤ c1⊕c2 for some c1 ∈ L1(µ) and c2 ∈ L1(ν). Then c
is Π(µ, ν)-uniformly integrable.

Proof. We may assume that c, c1, c2 ≥ 0. By the la Vallée–Poussin theorem
[2, Theorem 4.5.9, p. 272], 2(c1 ⊕ c2) ∈ L1(µ ⊗ ν) implies that there exists
a convex, increasing, superlinearly growing function ϕ : R+ → R+ such
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that ϕ(2(c1 ⊕ c2)) ∈ L1(µ ⊗ ν). Fubini’s theorem then shows that also
ϕ(2c1) ∈ L1(µ) and ϕ(2c2) ∈ L1(ν). Let π ∈ Π(µ, ν), then by convexity,∫

ϕ(c) dπ ≤
∫
ϕ

(
2
c1 ⊕ c2

2

)
dπ ≤ 1

2

∫
ϕ(2c1)⊕ ϕ(2c2) dπ

=
1

2

∫
ϕ(2c1) dµ+

∫
ϕ(2c2) dν <∞.

Thus supπ∈Π(µ,ν)

∫
ϕ(c) dπ < ∞ and now the converse direction of the la

Vallée–Poussin theorem yields the claim.

Proof of Theorem 5.10. The assumption clearly implies Cε < ∞. As πε is
(c, ε)-cyclically invariant by Corollary 2.9, (b) follows from Proposition 5.12.
In the light of Lemma 5.8 and Lemma 5.14, (b) implies (a) and (c).

Remark 5.15. Uniqueness of the optimal transport is known in many im-
portant examples, for instance for quadratic cost c(x, y) = ∥x − y∥2 on
Rd × Rd when µ (or ν) is absolutely continuous (see [35]). It seems plau-
sible that limε→0 πε exists even without this uniqueness; i.e., the entropic
regularization would select a particular optimal transport in the limit. We
have seen this in Theorem 5.5 where the minimal entropy optimal transport
π∗ = argminΠopt(µ,ν)H( · |P ) is selected, but in general it is open how to
formalize an analogue if all optimal transports have infinite entropy. One
example where selection is known, is the 1-dimensional Monge problem [14].

5.4 Convergence of Potentials

Throughout this section, X,Y are Polish, P = µ⊗ν and c ∈ L1(P ) is continu-
ous. By Section 4, the rescaled EOT potentials (φε, ψε) exist, are integrable,
and solve the dual EOT problem. Our aim is the show the convergence of
φε⊕ψε to a dual solution φ0⊕ψ0 of the optimal transport problem. To state
a separate convergence of φε and ψε, it is clearly necessary to choose a nor-
malization. We use the symmetric convention µ(φε) = ν(ψε), and then the
same will hold for the limit. Results for other normalizations, for instance
µ(φε) = 0, are an immediate consequence.

Theorem 5.16. Let P = µ⊗ν and let c ∈ L1(P ) be continuous. Let (φε, ψε)
be the rescaled EOT potentials for ε > 0.

(a) Given εn → 0, there is a subsequence (εk) such that φεk converges in
L1(µ) and ψεk converges in L1(ν).

(b) If limn φεn = φ µ-a.s. and limn ψεn = ψ ν-a.s. for εn → 0, then (φ,ψ)
are Kantorovich potentials and the convergence also holds in L1.
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In particular, if the Kantorovich potentials (φ0, ψ0) are a.s. unique, then
limε φε = φ0 in L1(µ) and limε ψε = ψ0 in L1(ν). Moreover, if X,Y are
compact, L1-convergence can be strengthened to uniform convergence in all
assertions.

In many important examples, it is known that the Kantorovich potentials
are a.s. unique (e.g., [1, Appendix B]), and then Theorem 5.16 yields a clear-
cut result on the convergence of the potentials in L1. In the case of non-
uniqueness, the situation is similar as in the primal problem (Remark 5.15):
we have a compactness result and we may conjecture that a particular limit is
selected, but it seems that this is known only for discrete marginals (see [9]).

The main difficulty in Theorem 5.16 is to establish compactness in a suit-
able sense. We only detail the proof in the special case where X,Y are com-
pact, so that we can use the standard Arcelà–Ascoli theorem (see also [24]).
For the general result, see [28].

Proof (Compact Case). When X,Y are compact, the continuous function c
is bounded and uniformly continuous. Lemma 4.9 and Lemma 4.11 (and
Remark 4.12) then show that φε, ψε are bounded and uniformly continuous,
uniformly in ε (after choosing suitable versions). By the Arcelà–Ascoli the-
orem, (φε)ε>0 is relatively compact in the topology of uniform convergence,
and similarly for (ψε)ε>0. This shows (a). Regarding (b), it also shows that
if limn φεn = φ µ-a.s. and limn ψεn = ψ ν-a.s., this convergence necessarily
uniform and the limits φ,ψ are continuous (again, after choosing suitable
versions). Let δ > 0 and A := {φ ⊕ ψ ≥ c + 2δ}. The uniform convergence
implies that for ε > 0 small enough,

dπε
dP

= e
φε⊕ψε−c

ε ≥ eδ/ε on A,

hence P (A) > 0 would imply πε(A) > 1 for ε > 0 small. We conclude that
φ ⊕ ψ ≤ c P -a.s. But since φ,ψ, c are all continuous, this already implies
that φ⊕ψ ≤ c on the support sptP = sptµ× spt ν. After possibly changing
φ,ψ on nullsets, we have that φ⊕ ψ ≤ c on X× Y.

It remains to show that φ,ψ are dual optimizers. Combining the uniform
convergence with the EOT duality (4.9) and Corollary 5.4, we have

µ(φ) + ν(ψ) = lim [µ(φε) + ν(ψε)] = lim Cε = C0.

In view of the optimal transport duality (5.3), this shows that φ,ψ are dual
optimizers and the proof is complete.

Corollary 5.17. Let P = µ ⊗ ν and let c ∈ L1(P ) be continuous. Then
limε→0 Cε = C0.
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This follows from the L1-convergence in Theorem 5.16 via duality:

C0 = µ(φ) + ν(ψ) = lim [µ(φεk) + ν(ψεk)] = lim Cεk .

We have cheated in this argument, though, as the proof of the L1-convergence
in [28] partially uses limε→0 Cε = C0. Specifically, [28] first shows the con-
vergence of the potentials in probability. Using the uniformly integrable
upper bound resulting from Lemma 4.9, this implies lim supε→0 Cε ≤ C0,
which in view of Cε ≥ C0 is enough to conclude lim supε→0 Cε = C0. In [28],
L1-convergence is then deduced by a Scheffé argument.

6 Sinkhorn’s Algorithm

Let (X, µ) and (Y, ν) be probability spaces. We fix R ∈ P(X× Y) satisfying
R≪ µ⊗ ν and write, as in Section 2.1,

e−c(x,y) =
dR

d(µ⊗ ν)
(x, y).

Thus c : X × Y → (−∞,∞] satisfies c < ∞ µ ⊗ ν-a.s. if and only if
R ∼ µ ⊗ ν, and that is the case of principal interest to us. On the other
hand, some results hold in the more general setting without additional ef-
fort. Throughout this section, we assume that the Schrödinger problem is
finite; i.e., Πfin(µ, ν) ̸= ∅. In particular, the (unique) Schrödinger bridge
π∗ ∈ Π(µ, ν) exists with H(π∗|R) <∞.

In the dual perspective, our aim is to solve the Schrödinger equations

φ(x) = − log

∫
Y
eψ(y)−c(x,y) ν(dy) µ-a.s., (SE1)

ψ(y) = − log

∫
X
eφ(x)−c(x,y) µ(dx) ν-a.s. (SE2)

We may start with some function φ0, say φ0 := 0, and alternatingly solve
the two equations: for t ≥ 0,

(1) define ψt as the solution of (SE2) with φ := φt,

(2) define φt+1 as the solution (SE1) with ψ := ψt,

and iterate. This is the basic idea of Sinkhorn’s algorithm. If the algorithm
reaches a fixed point, (φt, ψt) = (φt+1, ψt+1), then (φt, ψt) is a solution
of (SE1)–(SE2) and we have found the desired potentials. In most cases, it
will not reach a fixed point for finite t, but we shall prove convergence to a
fixed point under suitable conditions.

51



To add further motivation beyond the general idea of alternatingly solv-
ing the two equations, consider the dual problem from Section 3 and its
objective function

G(φ,ψ) := µ(φ) + ν(ψ)−
∫
eφ⊕ψ dR+ 1.

Recalling the interpretation of the Schrödinger equations as Euler–Lagrange
equations for optimality (Remark 3.4), the algorithm can be seen as a coor-
dinate ascent scheme for a concave maximization problem: for t ≥ 0, iterate

(1) ψt := argmaxG(φt, ·),

(2) φt+1 := argmaxG(·, ψt).

This implies the monotonicity of the scheme,

G(φt, ψt) ≤ G(φt+1, ψt) ≤ G(φt+1, ψt+1),

and in particular limtG(φt, ψt) exists. By the strict concavity of G, each
iteration will strictly increase the value G(φt, ψt), unless a fixed point has
been reached. Thus we may expect that G(φt, ψt) → G(φ∗, ψ∗) as well as
φt → φ∗ and ψt → ψ∗, for some potentials (φ∗, ψ∗).

Algorithm 6.1 (Sinkhorn, Dual Formulation). Set φ0 := 0. For t ≥ 0,

ψt(y) := − log

∫
X
eφt(x)−c(x,y) µ(dx),

φt+1(x) := − log

∫
Y
eψt(y)−c(x,y) ν(dy).

We also define

dπ(φ,ψ) := eφ⊕ψ dR = eφ⊕ψ−c d(µ⊗ ν),

π2t := π(φt, ψt), π2t−1 := π(φt, ψt−1), t ≥ 0,

were ψ−1 := 0 and thus π−1 = R.

The primal problem offers another perspective on Sinkhorn’s algorithm.
Starting with φt, Step (1) corresponds to choosing ψ = ψt such that the
measure

eφt⊕ψ−c d(µ⊗ ν)

has the required second marginal ν. Then, the choice (2) for φ = φt+1 corre-
sponds to “fitting” the first marginal of eφ⊕ψt−c d(µ⊗ ν) to be µ. Of course,
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the second marginal may now be off again, and the iteration continues. This
explains why Sinkhorn’s algorithm is also known as iterative proportional
fitting procedure, or IPFP.

There are many choices fitting one marginal. Setting the above algorithm
aside for the moment, one natural choice for a primal algorithm is to minimize
entropy relative to the last iterate, starting with R. That is, we set π−1 := R
and iterate for t ≥ 0,

π2t := argmin
Π(∗,ν)

H( · |π2t−1), (6.1)

π2t+1 := argmin
Π(µ,∗)

H( · |π2t), (6.2)

where Π(∗, ν) is the set of measures on X× Y with second marginal ν (and
arbitrary first marginal), and Π(µ, ∗) is analogous. Next, we rewrite this im-
plicit algorithm in a more explicit form. Let us focus on the second step (6.2),
where given π′ ≪ µ⊗ ν, the next iterate is

π := argmin
Π(µ,∗)

H( · |π′). (6.3)

To determine the minimizer, we can disintegrate a generic π ∈ Π(µ, ∗) into
π = µ ⊗ K and compare with π′ = µ′ ⊗ K ′, where µ′ is the first marginal
of π′. Assuming that π ≪ π′, we have

H(π|π′) = H(µ|µ′) +
∫
H(K|K ′) dµ.

The first term is independent of π ∈ Π(µ, ∗), hence the minimum is attained
for K := K ′ as that makes the second term vanish. For this choice of π,

H(π|π′) = H(µ|µ′) (6.4)

as well as
dπ

dπ′
(x, y) =

dµ

dµ′
dK

dK ′ =
dµ

dµ′
.

In conclusion, the iteration (6.1)–(6.2) can be stated explicitly as follows.

Algorithm 6.2 (Sinkhorn, Primal Formulation). Set π−1 := R. For t ≥ 0,
define πt ∈ P(X× Y) via

dπ2t
dπ2t−1

(x, y) :=
dν

dν2t−1
(y),

dπ2t+1

dπ2t
(x, y) :=

dµ

dµ2t
(x),

where (µt, νt) denotes the marginal distributions of πt.
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Next, we observe that this coincides with the dual formulation given in
Algorithm 6.1. Indeed, the conditional density dK′

dν (x, y) of π′ given x is the
quotient of the joint density dπ′

d(µ⊗ν) and marginal density
∫

dπ′

d(µ⊗ν) dν. With
π′ := π2t defined as in Algorithm 6.1, this yields

dK ′

dν
(x, y) =

eφt(x)+ψt(y)−c(x,y)∫
eφt(x)+ψt(y)−c(x,y)ν(dy)

=
eψt(y)−c(x,y)∫

eψt(y)−c(x,y)ν(dy)
.

In the primal formulation, π2t+1 was defined with the kernel K = K ′ and its
marginal density is dµ/dµ = 1, hence the joint density is

dπ2t+1

d(µ⊗ ν)
(x, y) =

dµ

dµ
(x)

dK

dν
(x, y) =

eψt(y)−c(x,y)∫
eψt(y)−c(x,y)ν(dy)

,

or equivalently, the log-density is

− log

∫
eψt(y)−c(x,y)ν(dy) + ψt(y)− c(x, y).

The log-density implied by Algorithm 6.1 is φt+1(x) +ψt(y)− c(x, y), hence
the above matches the definition φt+1(x) = −

∫
eψt(y)−c(x,y)ν(dy) in Algo-

rithm 6.1. Similar arguments hold for the update from 2t− 1 to 2t, and as a
result, the two formulation of Sinkhorn’s algorithms are equivalent. Below,
we mostly use the dual formulation.

Remark 6.3. Sinkhorn’s iteration is also used in the context of the entropic
optimal transport problem (EOT) where the cost c is not necessarily nor-
malized; i.e., α :=

∫
e−c d(µ ⊗ ν) ̸= 1. The following shows how our results

can be extended to this situation with minimal changes. Indeed, we can
introduce a normalized cost

ĉ := c+ logα

which satisfies
∫
e−ĉ d(µ⊗ ν) = 1; i.e., dR = e−ĉ = d(µ⊗ ν) is a probability.

Denote by (φt, ψt) the iterates of Algorithm 6.1 for cost c and by (φ̂t, ψ̂t)
the iterates for cost ĉ. Then a simple induction shows that

φt = φ̂t, ψt = ψ̂t − logα, t ≥ 0.

(This is analogous to Remark 4.3.) As eφt⊕ψs−c d(µ⊗ν) = eφ̂t⊕ψ̂s−ĉ d(µ⊗ν),
the induced measures πn are the same for both iterations. By applying our
results to ĉ, we can easily deduce the corresponding results for c. In fact,
most of the results below are stated in terms of differences such as ψt − ψs
and hence the formulas hold in the unnormalized case without changes.
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6.1 Basic Properties and Marginal Convergence

Denoting by (µt, νt) the marginal distributions of πt, we recall that

µ2t+1 = µ, ν2t = ν, t ≥ 0; (6.5)

that is, every other marginal is correct. One aim of this section is to show
that the “incorrect” marginals converge to the correct ones as t → ∞. We
first provide some basic properties.

Lemma 6.4. For all t ≥ 0 and n ≥ 0,

(i) φt ∈ L1(µ) and ψt ∈ L1(ν),

(ii) H(π2t|π2t−1) = ν(ψt − ψt−1) and H(π2t+1|π2t) = µ(φt+1 − φt),

(iii) µ(φn) =
∑n−1

t=0 H(π2t+1|π2t) and ν(ψn) =
∑n

t=0H(π2t|π2t−1); in par-
ticular, µ(φn) and ν(ψn) are nonnegative and increasing,20

Proof. (ii) For t ≥ 0,

H(π2t|π2t−1) =

∫
log

dπ2t
dπ2t−1

dπ2t =

∫
(ψt − ψt−1) dπ2t =

∫
(ψt − ψt−1) dν

(6.6)

where we have used (6.5) and the integrals are necessarily well-defined in
[0,∞]; in particular, (ψt − ψt−1)

− ∈ L1(ν). Similarly,

H(π2t+1|π2t) =
∫
(φt+1 − φt) dµ.

(i) Clearly ψ−1 and φ0 are integrable. Suppose that ψt−1 ∈ L1(ν) and
φt ∈ L1(µ), we show by induction that ψt ∈ L1(ν) and φt+1 ∈ L1(µ).
Indeed, (6.6) and ψt−1 ∈ L1(ν) imply (ψt)

− ∈ L1(ν). On the other hand,
using H(π∗|R) < ∞, Lemma 1.4 (a) yields log(dπ2t/dR)

+ = (φt + ψt)
+ ∈

L1(π∗). In view of π∗ ∈ Π(µ, ν) and the hypothesis that φt ∈ L1(µ), it
follows that (ψt)

+ ∈ L1(ν). We have shown ψt ∈ L1(ν), and the proof that
φt+1 ∈ L1(µ) is analogous.

(iii) Summing up (6.6) yields
n∑
t=0

H(π2t|π2t−1) =
n∑
t=0

∫
(ψt − ψt−1) dν =

∫
(ψn − ψ−1) dν = ν(ψn).

Similarly,
∑n

t=0H(π2t+1|π2t) = µ(φn+1).
20In the case of an unnormalized cost c (i.e., α :=

∫
e−c d(µ ⊗ ν) ̸= 1), the result for

ψn changes to ν(ψn) = − logα +
∑n
t=0H(π2t|π2t−1) and hence ν(ψn) ≥ − logα instead

of ν(ψn) ≥ 0. See Remark 6.3.
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We can now state a key property for the convergence analysis.

Proposition 6.5. For all n ≥ −1,

H(π∗|πn) = H(π∗|R)−
n∑
t=0

H(πt|πt−1). (6.7)

In particular, H(π∗|πn) is decreasing in n.

Proof. Recalling π−1 = R, the case n = −1 is clear. Let n ≥ 0. From
Lemma 6.4 (ii) we obtain

∑2n
t=0H(πt|πt−1) = µ(φn) + ν(ψn). On the other

hand, Lemma 1.4 (b) and H(π∗|R) <∞ yield

H(π∗|R)−H(π∗|π2n) = Eπ∗ [log(dπ2n/dR)] = Eπ∗ [φn + ψn]

= µ(φn) + ν(ψn),

where π∗ ∈ Π(µ, ν) and the integrability from Lemma 6.4 (i) were used for
the last equality. It follows that

H(π∗|R) = H(π∗|π2n) +
2n∑
t=0

H(πt|πt−1).

Similarly for 2n replaced by 2n+ 1, showing the claim.

As a consequence, we obtain that the marginals (µt, νt) of πt converge to
the correct marginals (µ, ν).

Corollary 6.6. For all t ≥ 1,

H(µt|µ) +H(νt|ν) ≤ H(πt|πt−1),

and the right-hand side is summable with∑
t≥1

H(πt|πt−1) ≤ H(π∗|R)−H(π0|R) ≤ H(π∗|R).

In particular, H(µt|µ) → 0 and H(νt|ν) → 0, and then also µt → µ and
νt → ν in variation.

Proof. If t ≥ 2 is even, then µ = µt−1 and ν = νt by (6.5), so that

H(µt|µ) +H(νt|ν) = H(µt|µt−1) ≤ H(πt|πt−1),

where the inequality is due the data processing inequality (Example 1.7).
Similarly for odd t ≥ 1, and the first inequality follows. For the second
inequality, note that (6.7) yields

∑∞
t=1H(πt|πt−1) ≤ H(π∗|R) − H(π0|R)

due to π−1 = R. The convergence in variation follows by Pinsker’s inequality
(Lemma 1.2).
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The next lemma lists further properties of the Sinkhorn marginals.

Lemma 6.7. For all t ≥ 0, we have

dµ2t
dµ

= eφt−φt+1 ,
dν2t−1

dν
= eψt−1−ψt

as well as dµ2t+1

dµ = 1 and dν2t
dν = 1. In particular,

H(µ2t|µ) = µ2t(φt − φt+1) = H(π2t|π2t+1),

H(ν2t−1|ν) = ν2t−1(ψt−1 − ψt) = H(π2t−1|π2t),

H(µ|µ2t) = µ(φt+1 − φt) = H(π2t+1|π2t),
H(ν|ν2t−1) = ν(ψt − ψt−1) = H(π2t|π2t−1),

H(µ2t+2|µ)−H(µ2t+2|µ2t) = µ2t+2(φt − φt+1),

H(ν2t+1|ν)−H(ν2t+1|ν2t−1) = ν2t+1(ψt−1 − ψt).

Proof. We write the marginal density by integrating out the second marginal
from the joint density,

dµ2t
dµ

(x) =

∫
Y

dπ2t
d(µ⊗ ν)

(x, y) ν(dy) =

∫
Y
eφt(x)+ψt(y)−c(x,y) ν(dy)

= eφt(x)
∫
Y
eψt(y)−c(x,y) ν(dy) = eφt(x)e−φt+1(x)

where the last step used the definition of φt+1. The proof for ν2t−1 is anal-
ogous. While dµ2t+1

dµ = 1 and dν2t
dν = 1 can be obtained in the same way, this

is also a restatement of (6.5).
The formulas for H(µ2t|µ) and H(ν2t−1|ν) are now immediate. It also

follows that

H(µ|µ2t) =
∫

log
dµ

dµ2t
dµ = −

∫
log

dµ2t
dµ

dµ = −µ(φt − φt+1)

which is equal to H(π2t+1|π2t) by Lemma 6.4 (ii). Similarly for H(ν|ν2t−1).
For the last pair of formulas, we use Lemma 1.4 (b) to see that

H(µ2t+2|µ)−H(µ2t+2|µ2t) =
∫

log
dµ2t
dµ

dµ2t+2 = µ2t+2(φt − φt+1),

and similarly for ν2t+1.
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Remark 6.8. The formula H(µ|µ2t) = H(π2t+1|π2t) in Lemma 6.7 was
already derived in (6.4). Taking it as a starting point gives a slightly different
way to understand the minimization property (6.3) of Sinkhorn’s projection:
the data processing inequality (Example 1.7) shows H(µ|µ2t) ≤ H(π|π2t) for
any π ∈ Π(µ, ∗), and as π2t+1 attains this bound, we have

π2t+1 = argmin
π∈Π(µ,∗)

H(π|π2t).

Remark 6.9. We have seen that H(µt|µ) → 0 and H(νt|ν) → 0; cf. Corol-
lary 6.6. The reverse entropies also converge: H(µ|µt) → 0 and H(ν|νt) → 0.
Indeed, H(µ|µ2t) = H(π2t+1|π2t) → 0 by Lemma 6.7 and Corollary 6.6, and
of course H(µ|µ2t+1) = 0. Similarly for νt.

6.2 Rate for Marginal Convergence

While Corollary 6.6 shows that H(µ2t|µ) → 0, our next aim is to prove a
rate for this convergence (and also for H(µ|µ2t) → 0). The rate is stated in
Corollary 6.12 below; the key step is the monotonicity of H(µ2t|µ). These
properties were obtained in [25], where the Sinkhorn marginals are framed
as a Bregman gradient descent scheme and the properties are derived as
structural consequences. Below, we give a proof through on an entropy
calculation which is elementary but may lack the deeper explanation.

Proposition 6.10. For t ≥ 0, we have

H(µ2t|µ) ≥ H(ν|ν2t+1) ≥ H(µ2t+2|µ) ≥ H(ν|ν2t+3) ≥ . . . ;

more precisely,

H(ν|ν2t+1) = H(µ2t+2|µ) +H(π2t+2|π2t)−H(µ2t+2|µ2t) ≥ H(µ2t+2|µ),
H(ν|ν2t+1) = H(µ2t|µ)−H(π2t|π2t+2) ≤ H(µ2t|µ).

Similarly, H(µ|µ2t) ≥ H(ν2t+1|ν) ≥ H(µ|µ2t+2) ≥ H(ν2t+3|ν) ≥ . . . for
t ≥ 0. In particular, the sequences

{H(µ2t|µ)}t≥0, {H(µ|µ2t)}t≥0, {H(ν|ν2t+1)}t≥0, {H(ν2t+1|ν)}t≥0

are monotone decreasing.

Proof. The last two displays imply the other claims. Moreover, the two
inequalities therein are clear: the data processing inequality (Example 1.7)
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shows H(π2t+2|π2t) ≥ H(µ2t+2|µ2t), and of course H(π2t|π2t+2) ≥ 0. Hence,
it suffices to prove the equalities. On the one hand, Lemma 6.7 yields

H(π2t|π2t+2) =

∫
(φt − φt+1 + ψt − ψt+1) dπ2t

= µ2t(φt − φt+1) + ν(ψt − ψt+1)

= H(µ2t|µ)−H(ν|ν2t+1),

which is the second equality. On the other hand, Lemma 6.7 yields

H(π2t+2|π2t) =
∫
(φt+1 − φt + ψt+1 − ψt) dπ2t+2

= µ2t+2(φt+1 − φt) + ν(ψt+1 − ψt)

= H(µ2t+2|µ2t)−H(µ2t+2|µ) +H(ν|ν2t+1),

which is the first equality.
The proof for H(µ|µ2t) ≥ H(ν2t+1|ν) ≥ H(µ|µ2t+2) is analogous, at

least for t ≥ 1. For t = 0, while H(µ|µ0) ≥ H(ν1|ν) formally follows from
the data processing inequality and computing H(π1|π−1) − H(ν1|ν−1) =
H(µ|µ0) − H(ν1|ν), it does not seem obvious that H(ν1|ν−1) < ∞. To
circumvent this, consider disintegrations π1(dx, dy) = ν1(dy)⊗K1(y, dx) and
π−1(dx, dy) = ν−1(dy) ⊗ K−1(y, dx). Formally, H(π1|π−1) − H(ν1|ν−1) =∫
H(K1|K−1) dν1, but the right-hand side is meaningful even if H(π1|π−1)

and H(ν1|ν−1) are both infinite. We have dK1/dµ = eφ1⊕ψ0−c/eψ0−ψ1 and
dK−1/dµ = eφ0⊕ψ−1−c/eψ−1−ψ0 , yielding

0 ≤
∫
H(K1|K−1) dν1 =

∫
(φ1 − φ0)⊕ (ψ1 − ψ0) dπ1

= µ(φ1 − φ0)− ν1(ψ0 − ψ1) = H(µ|µ0)−H(ν1|ν)

as desired.

We recall the following facts about monotone series.

Lemma 6.11. Let (an)n≥1 ⊂ [0,∞) be decreasing and A :=
∑

n≥1 an <∞.
Then

an = o(1/n) and an ≤ A/n, n ≥ 1.

Proof. We have nan ≤
∑n

k=1 ak ≤ A and hence an ≤ A/n. Moreover,
given ε > 0, there exists m such that

∑n−1
k=m ak ≤ ε for all n > m, thus

(n−m)an ≤ ε and then lim supn→∞ nan ≤ ε+ lim supn→∞man = ε.
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Corollary 6.12 (Sublinear Rate for Marginals). We have

H(µ2t|µ) = o(t), H(ν|ν2t−1) = o(t)

and, with A := H(π∗|R)−H(π0|R),

H(µ2t|µ) ≤ A/t, H(ν|ν2t−1) ≤ A/t, t ≥ 1.

Analogous results hold for H(ν2t−1|ν) and H(µ|µ2t−2).

Proof. For t ≥ 0, recall that H(µ2t|µ) ≤ H(π2t|π2t−1) by Corollary 6.6 and
H(ν|ν2t−1) = H(π2t|π2t−1) by Lemma 6.7. As

∑
t≥1H(πt|πt−1) ≤ A by

Corollary 6.6, we see that∑
t≥1

H(µ2t|µ) ≤ A,
∑
t≥1

H(ν|ν2t−1) ≤ A.

In view of the monotonicity stated in Proposition 6.10, Lemma 6.11 yields
the claim.

Remark 6.13. In the spirit of Proposition 6.10, one can also check that

∥µ− µ2t∥TV , ∥ν − ν2t+1∥TV , ∥πt+1 − πt∥TV , t ≥ 0

are decreasing sequences. See [11, Lemmas 33, 34].

6.3 Strong Convergence

The convergence of Sinkhorn’s algorithm can be shown under certain condi-
tions on c. We will see in the proof of Theorem 6.15 below that convergence
(of primal and dual iterates, as well as the values) follows once uniform in-
tegrability of certain sequences is guaranteed. The simplest case would be
to assume that c is bounded, which implies uniform bounds on φt, ψt (see
Lemma 6.14 below). In Theorem 6.15, we use a uniform lower bound on c
and an exponential integrability condition; this gives uniform lower bounds
on φt, ψt and a suitable integrability of the positive parts.

Lemma 6.14. Let x ∈ X and y ∈ Y.21

(i) For t ≥ 0,

inf
y∈Y

[
c(x, y)− ψt(y)

]
≤ φt+1(x) ≤

∫
c(x, y) ν(dy),

inf
x∈X

[
c(x, y)− φt(x)

]
≤ ψt(y) ≤

∫
c(x, y)µ(dx).

21For unnormalized c with α :=
∫
e−c d(µ⊗ ν) > 1, the bounds in Lemma 6.14 need to

be adjusted by a constant; cf. Remark 6.3.
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(ii) If c is bounded, then for t ≥ 0,

−2∥c∥∞ ≤ φt(x) ≤ ∥c∥∞, −2∥c∥∞ ≤ ψt(y) ≤ ∥c∥∞.

In particular, ∥φt∥∞ ≤ 2∥c∥∞ and ∥ψt∥∞ ≤ 2∥c∥∞.

(iii) If epc ∈ L1(µ⊗ ν) for some p > 0, then for t ≥ 0,

∥epφt+1∥L1(µ) ≤ ∥epc∥L1(µ⊗ν), ∥epψt∥L1(ν) ≤ ∥epc∥L1(µ⊗ν).

(iv) If c ≥ c0 ∈ (−∞, 0), then for t ≥ 1,

φt(x) ≥ c0 − log ∥eψt−1∥L1(ν) ≥ c0 − log ∥ec∥L1(µ⊗ν),

ψt(y) ≥ c0 − log ∥eφt∥L1(µ) ≥ c0 − log ∥ec∥L1(µ⊗ν).

Proof. We only detail the proofs for ψt.
(i),(ii) Recall that µ(φt) ≥ 0 and ν(ψt) ≥ 0 by Lemma 6.4 (iii). Jensen’s

inequality and µ(φt) ≥ 0 yield

ψt(y) = − log

∫
eφt(x)−c(x,y) µ(dx)

≤
∫

[−φt(x) + c(x, y)] µ(dx) ≤
∫
c(x, y)µ(dx) ≤ ∥c∥∞.

Similarly, φt(x) ≤
∫
c(x, y) ν(dy) ≤ ∥c∥∞, completing the proof of the upper

bounds. For the lower bound, we note that

ψt(y) ≥ − log

∫
esupx∈X[φt(x)−c(x,y)] µ(dx)

= − sup
x∈X

[
φt(x)− c(x, y)

]
≥ −∥c∥∞ − ∥φ+

t ∥∞ ≥ −2∥c∥∞,

here the upper bound of φt (resp. φ0 = 0 for t = 0) was used in the last step.
(iii) Using the upper bound in (i) and Jensen’s inequality,∫

epψt dν ≤
∫
ep

∫
c(x,y)µ(dx)ν(dy) ≤

∫
epcd(µ⊗ ν).

(iv) Using the definition of ψt and (iii) with p = 1,

e−ψt(y) =

∫
eφt(x)−c(x,y) µ(dx) ≤ e−c0∥eφt∥L1(µ) ≤ e−c0∥ec∥L1(µ⊗ν).

We can now show the convergence of Sinkhorn’s algorithm under an
exponential integrability of c.
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Theorem 6.15. Let c be bounded from below and such that∫
erc d(µ⊗ ν) <∞ for some r > 1. (6.8)

Then, for some Schrödinger potentials φ∗, ψ∗ and the Schrödinger bridge π∗,

(i) φt(x) → φ∗(x) and ψt(y) → ψ∗(y) for all (x, y) ∈ X× Y,

(ii) φt → φ∗ in Lp(µ) and ψt → ψ∗ in Lp(ν) for all p ∈ [1,∞),

(iii) H(π∗|πt) → 0 and πt → π∗ in variation,

(iv) H(πt|R) → H(π∗|R).

Proof. Note that µ ⊗ ν ∈ Πfin(µ, ν), so that π∗ exists and H(π∗|R) < ∞.
In view of Lemma 6.14 (iii),(iv) and the la Vallée–Poussin theorem [2, The-
orem 4.5.9, p. 272],

(eφt)t≥1, (φt)t≥1, (eφt−φt+1φt)t≥1 are uniformly integrable in L1(µ)

and similarly for ψt. For later use, we also recall from Lemma 6.4 that
µ(φt)t≥0 is increasing, hence the limit m := limt µ(φt) exists.

By the Dunford–Pettis theorem [2, Theorem 4.7.18, p. 285], after passing
to a subsequence, the uniformly integrable sequence eφt converges weakly in
L1(µ) to some function Φ; i.e., relative to the topology σ(L1(µ), L∞(µ)). We
write Φ = eφ∗ . As e−c(·,y) ∈ L∞(µ) due to the lower bound of c, it follows
for fixed y ∈ Y that

lim
t→∞

ψt(y) = − log lim
t→∞

∫
eφt(x)e−c(x,y) µ(dx) = − log

∫
eφ∗(x)−c(x,y) µ(dx).

We write ψ∗(y) for the right-hand side, so that ψt → ψ∗ pointwise, and by
uniform integrability also eψt → eψ∗ in L1(ν). Noting that (eψt(·)−c(x,·))t≥0 ⊂
L1(ν) is uniformly integrable for every x ∈ X, we also have

lim
t→∞

φt+1(x) = − log lim
t→∞

∫
eψt(y)−c(x,y) ν(dy) = − log

∫
eψ∗(y)−c(x,y) ν(dy)

and the right-hand side must coincide with φ∗ µ-a.s. Choosing a suitable
version of φ∗, we have φt(x) → φ∗(x) for all x ∈ X.

In brief, (φ∗, ψ∗) is a solution of the Schrödinger equations; cf. Corol-
lary 2.5. In view of the exponential integrability and uniform lower bounds,
it is clear that φt → φ∗ in Lp(µ) for all p ∈ [1,∞), and similarly for ψt. To
see that the original sequence (φt) converges to φ∗, we still need to argue that
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the potential φ∗ does not depend on the subsequence chosen above. Indeed,
the potential is unique up to a constant (Theorem 2.1) and hence completely
determined by its mean. As noted in the beginning of the proof, the limit
m = limt µ(φt) = µ(φ∗) exists along the original sequence, so that φ∗ cannot
depend on the subsequence.

As (φ∗, ψ∗) is a solution of the Schrödinger equations, π(φ∗, ψ∗) = π∗ is
the Schrödinger bridge. Clearly H(π∗|π2t) = µ(φ∗ − φt) + ν(ψ∗ − ψt) → 0,
and similarly for π2t+1. By Pinsker’s inequality (Lemma 1.2), this also yields
πt → π∗ in variation. Finally, using Lemma 6.7,

H(π2t|R)−H(π∗|R) = µ2t(φt)− µ(φ∗) + ν(ψt)− ν(ψ∗)

= µ(eφt−φt+1φt)− µ(φ∗) + ν(ψt)− ν(ψ∗) → 0

due to φt(x) − φt+1(x) → 0 and the uniform integrability of eφt−φt+1φt.
Similarly for π2t+1.

Remark 6.16. Condition (6.8) can be weakened to∫
er

∫
c(x,y) ν(dy) µ(dx) <∞ and

∫
er

∫
c(x,y)µ(dx) ν(dy) <∞ (6.9)

for some r > 1 (which is weaker due to Jensen’s inequality). The proof of
Theorem 6.15 remains unchanged except that we now use Lemma 6.14 (i)
instead of (iii) to obtain the uniform integrability of (eφt) and (eψt).

Remark 6.17. [32] gives a different set of integrability conditions to de-
rive uniform integrability and hence convergence of Sinkhorn’s algorithm;
see Conditions (A1), (B1), (B2) in [32]. Those conditions are not directly
comparable to the ones above—neither includes the other. Instead of ex-
ponential integrability, [32] assumes among several other properties that∫
e−c(x,y) µ(dx) is uniformly bounded away from zero, which is quite gen-

eral if c is bounded in the y variable but restrictive otherwise.
On a related note, we remark that (6.8) is still a fairly strong condition:

in the context of (εEOT) where c is replaced by c/ε, it requires that c has
an exponential moment of order larger than 1/ε.

One can certainly think of other sets of conditions to prove a version
of Theorem 6.15. However, it is worth noting that the convergence of Al-
gorithm 6.1 is less general than the convergence of the marginals in Corol-
lary 6.6, which did not even require finiteness of c.

Example 6.18 (Divergence of Sinkhorn Iterates). As in Example 2.16, con-
sider X = Y = {0, 1} with uniform marginals µ, ν while R is the uniform
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distribution on {(0, 0), (0, 1), (1, 1)}, thus corresponding to a cost function
taking the value c(1, 0) = ∞. As observed in Example 2.16, Π(µ, ν) has a
unique element absolutely continuous wrt. R, the Schrödinger bridge

π∗ =
1

2
(δ(0,0) + δ(1,1)).

We know from Corollary 6.6 that the Sinkhorn marginals (µt, νt) converge
to (µ, ν). From the finiteness of X × Y, it is clear that (πt) admits cluster
points. Any cluster point π must have the limit marginals (µ, ν) and satisfy
π ≪ R, which already implies π = π∗ by the above. As a result, πt → π∗ in
variation.

Next, consider the Sinkhorn iterates φt, ψt. By construction, we have
φt(x)+ψt(y) = log(dπ2tdR (x, y)) R-a.s., and the fact that π2t → π∗ in variation
means that dπ2t

dR → dπ∗
dR R-a.s. More explicitly,

φt(0) + ψt(0) → log
3

2
, φt(0) + ψt(1) → −∞, φt(1) + ψt(1) → log

3

2
.

This implies that both φt and ψt diverge.

Sharp conditions for the convergence of (πn) in variation do not seem to
be known at present. The next result at least shows that if (πn) converges
in variation, then the limit is indeed the Schrödinger bridge π∗.

Proposition 6.19. Let c <∞ µ⊗ν-a.s., or equivalently R ∼ µ⊗ν. Suppose
that a subsequence (πnk) of the Sinkhorn iterates of Algorithm 6.2 converges
in total variation. Then the limit is the Schrödinger bridge π∗. Moreover, if
nk = 2tk, the iterates φtk , ψtk of Algorithm 6.1 satisfy φtk ⊕ ψtk → φ∗ ⊕ ψ∗
in µ⊗ ν-probability, where φ∗ ⊕ ψ∗ is the (uniquely determined) sum of the
Schrödinger potentials. The analogue holds for nk = 2tk − 1.

Proof. For simplicity, we denote the subsequence by (πn). Let πn → π0 in
variation. As πn ≪ R for all n, it follows that π0 ≪ R and, for n = 2t,

eφt⊕ψt =
dπn
dR

→ dπ0
dR

=: eF in L1(R).

Here F is a measurable function with values in [−∞,∞). As π0 is a prob-
ability, π0{F > −∞} = 1 and hence R{F > −∞} > 0. After passing to
a subsequence, we have φt ⊕ ψt → F R-a.s. Recalling R ∼ µ ⊗ ν, Corol-
lary 2.12 (b) then states that F = φ ⊕ ψ for some measurable functions
φ : X → [−∞,∞) and ψ : Y → [−∞,∞), and now Theorem 2.1 (b) shows
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that π0 = π∗. Thus, convergence must hold along the original sequence (πn).
More precisely, Corollary 2.12 (b) and Theorem 2.1 (b) imply that

eφt⊕ψt → eφ∗⊕ψ∗ in L1(R),

where (φ∗, ψ∗) are the Schrödinger potentials (which are finite and unique
up to additive constant). This implies φt⊕ψt → φ∗⊕ψ∗ in µ⊗ν-probability.
Similarly for ψt−1 instead of ψt.

In the discrete case where X and Y are finite sets, it is clear that (πn)
converges in variation after passing to a subsequence, simply because the
weights (πn(x, y)) form a bounded set in a finite-dimensional space. For
finite cost c, we can then apply Proposition 6.19 to deduce that the whole
sequence converges to π∗. (As c is even bounded, this is also clear from
Theorem 6.15.) But when X,Y are not discrete, compactness for the total
variation topology can be hard to establish. The next section offers an
alternate approach using weak convergence. The advantage of the weak
topology is that (relative) compactness is immediate.

6.4 Weak Convergence and the Link to Stability

In this section we frame the convergence of Sinkhorn’s algorithm as a more
general question, the stability of entropic optimal transport problems.

Given the cost c and marginals µ, ν, we have seen that if there exists
a coupling with finite entropy wrt. R, there exists a unique Schrödinger
bridge π∗ = π(µ, ν) ∈ Π(µ, ν). Or equivalently, if we do not enforce the
normalization for c, a unique solution π∗ ∈ Π(µ, ν) of the entropic optimal
transport problem

C1(µ, ν) = inf
π∈Π(µ,ν)

∫
c dπ +H(π|µ⊗ ν). (6.10)

Consider sequences of marginals µn → µ and νn → ν, where the convergence
is in a sense to be chosen. Assuming suitable integrability, there are unique
solutions πn ∈ Π(µn, νn) of22

C1(µn, νn) = inf
π∈Π(µn,νn)

∫
c dπ +H(π|µn ⊗ νn).

22As
∫
e−c d(µn⊗ νn) typically depends on n, using the formulation of entropic optimal

transport avoids introducing an additional constant depending on n, whence our preference
over the Schrödinger bridge formulation.
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It is then natural to ask whether πn → π∗ (in a suitable sense). In words, we
expect the solution to be stable wrt. the marginals. Similar questions can be
asked for the potentials and the values C1.

Several results on stability have been obtained in the recent literature [7,
12, 23, 16]; we detail and apply the one of [23]. We say that π ∈ Π(µ, ν)
is c-cyclically invariant Definition 5.11 holds with ε = 1, or equivalently if
Definition 2.6 holds for dR ∝ e−cd(µ⊗ν). Under the condition C1(µ, ν) <∞,
we have seen that the solution π∗ of (6.10) is c-cyclically invariant and that
it is uniquely characterized by that property (Corollary 2.9). In [1, 23], the
authors do not impose the condition C1(µ, ν) < ∞ but work directly with
cyclical invariance. In that language, the question on stability of optimizers
becomes: if πn ∈ Π(µn, νn) are c-cyclically invariant, does convergence of
the marginals imply convergence of πn to a c-cyclically invariant coupling of
the limiting marginals?

The following is special case of [23, Theorem 1.4]. The general assump-
tions are that X,Y are Polish metric spaces and that c : X × Y → R is con-
tinuous and bounded from below. To allow for the techniques used in [23],
the spaces X and X × Y are assumed to satisfy the assertion of Lebesgue’s
theorem on differentiation of measures:

Assumption 6.20. Given ρ, λ ∈ P(X) satisfying ρ≪ λ, there exists X0 ⊂ X
of full λ-measure such that

f(x) := lim
r→0

ρ(Br(x))

λ(Br(x))
, x ∈ X0 (6.11)

defines a version of the Radon–Nikodym density dρ/dλ. The analogous prop-
erty is assumed on the space X× Y.

This holds in particular when X,Y are Euclidean spaces, the main exam-
ple of interest. The conclusion then reads as follows.

Theorem 6.21 (Weak Stability). For n ≥ 1, let (µn, νn) ∈ P(X) × P(Y)
and let πn ∈ Π(µn, νn) be c-cyclically invariant. Suppose that µn, νn con-
verge weakly to some limits µ, ν. Then πn converges weakly to the unique
c-cyclically invariant coupling π∗ ∈ Π(µ, ν).

Weak convergence of (πn), at least along a subsequence, is clear by the
compactness stated in Lemma 5.7. The main insight in Theorem 6.21 is that
any limit π must be equivalent to µ ⊗ ν and that one can pass to the limit
in the definition of c-cyclical invariance. We refer to [23] for the proof.

Let us now return to Sinkhorn’s algorithm. Here we start from marginals
µ, ν and the algorithm itself generates certain marginals µn, νn. These sat-
isfy µn ∼ µ and νn ∼ ν (cf. Lemma 6.7); moreover, µn → µ and νn → ν in
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variation (Corollary 6.6), which of course implies weak convergence. Our ap-
proach is to see the iterates πn as solutions to EOT problems with marginals
µn, νn, so that the stability theorem can be turned into a convergence result
for the algorithm.

Indeed, writing φt, ψt for the Sinkhorn iterates as before, we have by
construction that

dπ2t
d(µ⊗ ν)

= eφt⊕ψt−c µ⊗ ν-a.s.

and similarly for π2t−1. This is not quite our standard form with the EOT
potentials, because µ and ν are not the marginals of π2t, but it can be
translated as follows.

Lemma 6.22. Let πt, φt, ψt be the Sinkhorn iterates of Algorithm 6.1. Then

dπn
d(µn ⊗ νn)

= eφ̃n⊕ψ̃n−c µn ⊗ νn-a.s.

for n ≥ 1, where{
φ̃n := φt+1, ψ̃n := ψt if n = 2t,

φ̃n := φt, ψ̃n := ψt if n = 2t− 1.

In particular, πn ∈ Π(µn, νn) is c-cyclically invariant for all n ≥ 1.

Proof. Recalling from Lemma 6.7 the formulas for the marginals densities
and using

dπn
d(µn ⊗ νn)

=
dπn

d(µ⊗ ν)

d(µ⊗ ν)

d(µn ⊗ νn)
,

we see that

dπ2t
d(µ2t ⊗ ν2t)

=
dπ2t

d(µ⊗ ν)

dµ

dµ2t
= eφt⊕ψt−ceφt+1−φt = eφt+1⊕ψt−c

and similarly for 2t− 1. The last conclusion follows from Lemma 2.7.

If C(µn, νn) <∞, the c-cyclical invariance in Lemma 6.22 means that πn
is the minimizer. Depending on the assumptions on c, it may or may not be
clear that the Sinkhorn marginals satisfy C(µn, νn) < ∞. One convenience
of working with c-cyclical invariance is that finiteness is not important in the
first place.
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Theorem 6.23 (Weak Convergence of Sinkhorn). Let X,Y be Euclidean
spaces, or more generally Polish metric spaces satisfying Assumption 6.20.
Let c be continuous and bounded from below, and let C1(µ, ν) < ∞. Then
the Sinkhorn iterates (πn) converge weakly to the optimizer π∗ ∈ Π(µ, ν)
of (6.10).

Proof. As µn → µ and νn → ν in variation by Corollary 6.6, Theorem 6.21
immediately tells us that πn → π0 ∈ Π(µ, ν) weakly for a c-cyclically invari-
ant coupling π0, and as C1(µ, ν) < ∞, it follows that π0 is the optimizer π∗
(Corollary 2.9).

A different application of stability to Sinkhorn’s algorithm can be found
in [16], where a rate of convergence in Wasserstein metric is provided.

6.5 Linear Convergence for Bounded Cost

In this section we give a quite different analysis of Sinkhorn’s algorithm.
Instead of using probabilistic properties, we study the dual problem as a
concave maximization and the algorithm as a coordinate ascent. One pur-
pose of this section is to highlight how strong convexity (a lower bound on
the second derivative) leads to linear convergence. This is particularly clear
in the analysis of [5] which we follow in this section. Other proofs of linear
convergence for bounded cost have been given through the Hilbert–Birkhoff
projective metric (see [8, 20]); we do not cover that approach here.

Let c be bounded and measurable (we do not assume
∫
e−cd(µ⊗ν) = 1).

For φ ∈ L1(µ), ψ ∈ L1(ν), consider the objective function of the dual EOT
problem,

G(φ,ψ) := µ(φ) + ν(ψ)−
∫
eφ⊕ψ−c d(µ⊗ ν) + 1. (6.12)

The following algorithm deviates slightly from the one considered above—
it centers the first potential—hence we distinguish the notation.

Algorithm 6.24 (Sinkhorn with Centering). Set φ̄0 := 0. For t ≥ 0,

ψ̄t(y) := − log

∫
X
eφ̄t(x)−c(x,y) µ(dx), (6.13)

φ̄t+1(x) := − log

∫
Y
eψ̄t(y)−c(x,y) ν(dy) + λt, where (6.14)

λt :=

∫
X
log

(∫
Y
eψ̄t(y)−c(x,y) ν(dy)

)
µ(dx). (6.15)
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Comparing with Algorithm 6.1, ψ̄t is updated like ψt, but φ̄t+1 is cen-
tered: λt is chosen such that µ(φ̄t+1) = 0. While Algorithm 6.1 corresponds
to an unconstrained coordinate ascent, Algorithm 6.24 can be expressed as

ψ̄t(y) = argmax
ψ∈L1(ν)

G(φ̄t, ψ), φ̄t+1(x) = argmax
φ∈L1(µ):µ(φ)=0

G(φ, ψ̄t).

This is again a coordinate ascent, but φ̄t+1 is chosen in a smaller space
given by the centering constraint. These iterates are related to the ones in
Algorithm 6.1 as follows.

Lemma 6.25. Let (φt, ψt) be the usual Sinkhorn iterates as defined in Al-
gorithm 6.1. Then µ(φt) = −(λ0 + · · ·+ λt−1) and

φ̄t = φt − µ(φt), ψ̄t = ψt + µ(φt)

for all t ≥ 0. In particular, φ̄t ⊕ ψ̄t = φt ⊕ ψt and G(φ̄t, ψ̄t) = G(φt, ψt).

Proof. This readily follows by induction.

As ψ̄t is defined through the Schrödinger equation,

dπ(φ̄t, ψ̄t) = eφ̄t⊕ψ̄t−c d(µ⊗ ν) has second marginal ν, (6.16)

as in (6.5). Or we can argue through Lemma 6.25: π(φ̄t, ψ̄t) = π2t(φt, ψt)
is as before, hence still has second marginal ν. By contrast, the measure
π(φ̄t+1, ψ̄t) = eφ̄t+1⊕ψ̄t−c d(µ⊗ ν) does not have first marginal µ in general,
due to the centering constraint. It is not a probability (unless λt = 0), and
we shall not use this measure below.

The main advantage of the centering is that it allows us the separate the
two coordinates as follows: for φ ∈ L2(µ) and ψ ∈ L2(ν),

∥φ⊕ ψ∥2L2(µ⊗ν) = ∥φ∥2L2(µ) + ∥ψ∥2L2(ν) if µ(φ) = 0. (6.17)

Next, we check that the modified iterates are still bounded when c is
bounded (this could also be inferred from Lemma 6.14 via Lemma 6.25).

Lemma 6.26. For every t ≥ 0, we have

∥φ̄t∥∞ ≤ 2∥c∥∞, ∥ψ̄t∥∞ ≤ 3∥c∥∞.
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Proof. Using the definition (6.14) of φ̄t and writing ψ̄ := ψ̄t−1, we find that
for all x1, x2 ∈ X,

φ̄t(x1)− φ̄t(x2)

= log

∫
eψ̄(y)−c(x2,y) ν(dy)− log

∫
eψ̄(y)−c(x1,y) ν(dy)

= log

∫
ec(x1,y)−c(x2,y)+ψ̄(y)−c(x1,y) ν(dy)− log

∫
eψ̄(y)−c(x1,y) ν(dy)

≤ log

[
esupy∈Y |c(x1,y)−c(x2,y)|

∫
eψ̄(y)−c(x1,y) ν(dy)

]
− log

∫
eψ̄(y)−c(x1,y) ν(dy)

= sup
y∈Y

|c(x1, y)− c(x2, y)| ≤ 2∥c∥∞.

(This was the same calculation as in the proof of Lemma 4.11, and no par-
ticular property of ψ̄ was used.) As µ(φ̄t) = 0, we must have supx φ̄t(x) ≥ 0
and infx φ̄t(x) ≤ 0, hence the above implies ∥φ̄t∥∞ ≤ 2∥c∥∞. The defini-
tion (6.13) of ψ̄t now directly yields ∥ψ̄t∥∞ ≤ ∥φ̄t∥∞ + ∥c∥∞ ≤ 3∥c∥∞.

The main result of this section reads as follows.

Theorem 6.27. Let c be bounded and let (φ̄∗, ψ̄∗) be the unique EOT po-
tentials with µ(φ̄∗) = 0. The iterates (φ̄t, ψ̄t)t≥0 of Algorithm 6.24 satisfy

G(φ̄∗, ψ̄∗)−G(φ̄t, ψ̄t) ≤ βt
(
G(φ̄∗, ψ̄∗)−G(φ̄0, ψ̄0)

)
, (6.18)

∥φ̄∗ − φ̄t∥2L2(µ) + ∥ψ̄∗ − ψ̄t∥2L2(ν) ≤ β0β
t
(
G(φ̄∗, ψ̄∗)−G(φ̄0, ψ̄0)

)
, (6.19)

where β := 1− e−24∥c∥∞ ∈ (0, 1) and β0 := 2e6∥c∥∞.

Theorem 6.27 carries over to the uncentered Sinkhorn algorithm.

Corollary 6.28. Let c be bounded and (φt, ψt)t≥0 the iterates of Algorithm 6.1.
Let (φ∗, ψ∗) be the unique EOT potentials with µ(φ∗) = limt µ(φt). Then

G(φ∗, ψ∗)−G(φt, ψt) ≤ βt
(
G(φ∗, ψ∗)−G(φ0, ψ0)

)
, (6.20)

∥φ∗ − φt∥2L2(µ) + ∥ψ∗ − ψt∥2L2(ν) ≤ β0β
t
(
G(φ∗, ψ∗)−G(φ0, ψ0)

)
, (6.21)

where β := 1− e−24∥c∥∞ ∈ (0, 1) and β0 := 2e6∥c∥∞.

Proof. As G(φ̄t, ψ̄t) = G(φt, ψt) by Lemma 6.25, the convergence (6.20) is
immediate from (6.18). Let αt = ν(φ∗ − φt) ≥ 0 and βt = ν(ψ∗ − ψt) ≥ 0,
where the sign is due to Lemma 6.4 (iii). Hence, Ψt := ψ∗ − ψt − βt is
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centered, and we recall that φ̄∗ − φ̄t is centered as well. Using Lemma 6.25
as well as (6.17) with a centered random variable and a constant,

∥φ∗ − φt∥2L2(µ) + ∥ψ∗ − ψt∥2L2(ν) = ∥φ̄∗ − φ̄t + αt∥2L2(µ) + ∥Ψt + βt∥2L2(ν)

= ∥φ̄∗ − φ̄t∥2L2(µ) + α2
t + ∥Ψt∥2L2(ν) + β2t

≤ ∥φ̄∗ − φ̄t∥2L2(µ) + ∥Ψt∥2L2(ν) + (αt + βt)
2

= ∥φ̄∗ − φ̄t∥2L2(µ) + ∥Ψt + αt + βt∥2L2(ν)

= ∥φ̄∗ − φ̄t∥2L2(µ) + ∥ψ̄∗ − ψ̄t∥2L2(ν).

Therefore, (6.21) follows from (6.19)

Remark 6.29. As the iterates are uniformly bounded by Lemma 6.26, the
linear convergences (6.19), (6.21) in L2 already imply the corresponding
linear convergences in Lp for any p ∈ [1,∞).

While the convergence in Theorem 6.27 and Corollary 6.28 is linear, one
can observe that the constants β, β0 may be very close to one and very
large, respectively, especially in the context of (εEOT) where c is replaced
by c/ε. There are other techniques to show linear convergence, but they
seem to share the issue of yielding poor constants, contrasting with the fast
convergence of Sinkhorn’s algorithm typically seen in computational practice.

6.5.1 Proof of Theorem 6.27

The basic idea is to use the strong convexity of the exponential function on
an interval [−α,∞),

eb − ea ≥ (b− a)ea +
e−α

2
|b− a|2 for a, b ∈ [−α,∞). (6.22)

Lemma 6.30. Consider φ,φ′ ∈ L2(µ) and ψ,ψ′ ∈ L2(ν), and define

∂1G(φ
′, ψ′)(x) = 1−

∫
Y
eφ

′(x)+ψ′(y)−c(x,y) ν(dy),

∂2G(φ
′, ψ′)(y) = 1−

∫
X
eφ

′(x)+ψ′(y)−c(x,y) µ(dx).

If φ⊕ ψ − c ≥ −α and φ′ ⊕ ψ′ − c ≥ −α for some α ∈ R, then

G(φ′, ψ′)−G(φ,ψ) ≥
∫
X
∂1G(φ

′, ψ′)(x) [φ′(x)− φ(x)]µ(dx)

+

∫
Y
∂2G(φ

′, ψ′)(y) [ψ′(y)− ψ(y)] ν(dy)

+
e−α

2
∥(φ− φ′)⊕ (ψ − ψ′)∥2L2(µ⊗ν).
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Proof. We use (6.22) to obtain the inequality in

G(φ′, ψ′)−G(φ,ψ)

= µ(φ′ − φ) + ν(ψ′ − ψ) +

∫
eφ⊕ψ−c − eφ

′⊕ψ′−c d(µ⊗ ν)

≥ µ(φ′ − φ) + ν(ψ′ − ψ) +

∫
(φ⊕ ψ − φ′ ⊕ ψ′)eφ

′⊕ψ′−c d(µ⊗ ν)

+
e−α

2

∫
|φ⊕ ψ − φ′ ⊕ ψ′|2 d(µ⊗ ν)

=

∫
X
∂1G(φ

′, ψ′)(x) [φ′(x)− φ(x)]µ(dx)

+

∫
Y
∂2G(φ

′, ψ′)(y) [ψ′(y)− ψ(y)] ν(dy)

+
e−α

2
∥(φ− φ′)⊕ (ψ − ψ′)∥2L2(µ⊗ν).

Lemma 6.31. With σ := e−6∥c∥∞, we have

G(φ̄t+1, ψ̄t+1)−G(φ̄t, ψ̄t) ≥
σ

2

(
∥φ̄t+1 − φ̄t∥2L2(µ) + ∥ψ̄t+1 − ψ̄t∥2L2(ν)

)
.

Proof. We write the left-hand side as(
G(φ̄t+1, ψ̄t+1)−G(φ̄t+1, ψ̄t)

)
+
(
G(φ̄t+1, ψ̄t)−G(φ̄t, ψ̄t)

)
and estimate separately these two steps of the algorithm. For the first part,
Lemma 6.30 with α = 6∥c∥∞ yields

G(φ̄t+1, ψ̄t+1)−G(φ̄t+1, ψ̄t)

≥
∫
Y
∂2G(φ̄t+1, ψ̄t+1)(y) [ψ̄t+1(y)− ψ̄t(y)] ν(dy) +

σ

2
∥ψ̄t − ψ̄t+1∥2L2(ν).

Here the integral vanishes as the second marginal of π2t+2 is ν; cf. (6.16):

∂2G(φ̄t+1, ψ̄t+1)(y) ν(dy) = ν(dy)−
∫
X
eφ̄t+1(x)+ψ̄t+1(y)−c(x,y) µ(dx)ν(dy)

= ν(dy)−
∫
X
π2t+2(dx, dy) = ν(dy)− ν(dy) = 0. (6.23)

For the second part, Lemma 6.30 yields

G(φ̄t+1, ψ̄t)−G(φ̄t, ψ̄t)

≥
∫
X
∂1G(φ̄t+1, ψ̄t)(x) [φ̄t+1(x)− φ̄t(x)]µ(dx) +

σ

2
∥φ̄t − φ̄t+1∥2L2(µ).
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Here the integral vanishes for a different reason: the definition (6.14) of φ̄t+1

states that
∫
Y e

ψ̄t(y)−c(x,y) ν(dy) = e−φ̄t+1(x)+λt ; thus

∂1G(φ̄t+1, ψ̄t)(x) = 1− eφ̄t+1(x)

∫
Y
eψ̄t(y)−c(x,y) ν(dy) = 1− eλt

is deterministic and the centering µ(φ̄t+1) = µ(φ̄t) = 0 implies∫
X
∂1G(φ̄t+1, ψ̄t)(x) [φ̄t+1(x)− φ̄t(x)]µ(dx)

= (1− eλt)

∫
X
[φ̄t+1(x)− φ̄t(x)]µ(dx) = 0. (6.24)

Combining the estimates for the two parts completes the proof.

Proof of Theorem 6.27. Recall the bounds for φ̄t, ψ̄t from Lemma 6.26 and
note that φ̄∗, ψ̄∗ satisfy the same bounds (either by following the proof of
Lemma 6.26 or by an application of Lemma 6.14). We can then apply
Lemma 6.30 with α = 6∥c∥∞ to obtain

G(φ̄t, ψ̄t)−G(φ̄∗, ψ̄∗) ≥
∫
X
∂1G(φ̄t, ψ̄t)(x) [φ̄t(x)− φ̄∗(x)]µ(dx)

+

∫
Y
∂2G(φ̄t, ψ̄t)(y) [ψ̄t(y)− ψ̄∗(y)] ν(dy)

+
σ

2

(
∥φ̄t − φ̄∗∥2L2(µ) + ∥ψ̄t − ψ̄∗∥2L2(ν)

)
, (6.25)

where σ := e−α = e−6∥c∥∞ and (6.17) was used in the last line. For the
second integral, we have∫

Y
∂2G(φ̄t, ψ̄t)(y) [ψ̄t(y)− ψ̄∗(y)] ν(dy) = 0 (6.26)

as in (6.23). To estimate the first integral, we first note that as in (6.24),∫
X
∂1G(φ̄t+1, ψ̄t)(x) [φ̄t(x)− φ̄∗(x)]µ(dx) = 0.

Hence∫
X
∂1G(φ̄t, ψ̄t)(x) [φ̄t(x)− φ̄∗(x)]µ(dx)

=

∫
X
[∂1G(φ̄t, ψ̄t)(x)− ∂1G(φ̄t+1, ψ̄t)(x)] [φ̄t(x)− φ̄∗(x)]µ(dx)

≥ − 1

2σ
∥∂1G(φ̄t, ψ̄t)− ∂1G(φ̄t+1, ψ̄t)∥2L2(µ) −

σ

2
∥φ̄t − φ̄∗∥2L2(µ) (6.27)
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where the inequality follows from Hölder’s and Young’s inequality: apply∫
gh dµ ≥ − 1

σ1/2
∥g∥L2(µ)σ

1/2∥h∥L2(µ) ≥ − 1

2σ
∥g∥2L2(µ) −

σ

2
∥h∥2L2(µ)

to g(x) := ∂1G(φ̄t, ψ̄t)(x)−∂1G(φ̄t+1, ψ̄t)(x) and h(x) := φ̄t(x)− φ̄∗(x). We
use (6.27) and (6.26) in (6.25) to find

G(φ̄∗, ψ̄∗)−G(φ̄t, ψ̄t) ≤
1

2σ
∥∂1G(φ̄t, ψ̄t)− ∂1G(φ̄t+1, ψ̄t)∥2L2(µ). (6.28)

Suppressing the argument for brevity,

|∂1G(φ̄t, ψ̄t)(x)− ∂1G(φ̄t+1, ψ̄t)(x)| ≤
∫
Y

∣∣∣eφ̄t+1⊕ψ̄t−c − eφ̄t⊕ψ̄t−c
∣∣∣ ν(dy)

≤ e6∥c∥∞
∫
Y
|φ̄t+1 ⊕ ψ̄t − φ̄t ⊕ ψ̄t| ν(dy)

=
1

σ
|φ̄t+1(x)− φ̄t(x)|

where the second inequality used Lemma 6.26 and the Lipschitz continuity
of the exponential: |eb − ea| ≤ eM |b− a| for a, b ≤M . As a result,

∥∂1G(φ̄t, ψ̄t)− ∂1G(φ̄t+1, ψ̄t)∥2L2(µ) ≤
1

σ2
∥φ̄t+1 − φ̄t∥2L2(µ).

In view of (6.28), we conclude that

G(φ̄∗, ψ̄∗)−G(φ̄t, ψ̄t) ≤
1

2σ3
∥φ̄t+1 − φ̄t∥2L2(µ).

Now using Lemma 6.31 on the right-hand side yields

G(φ̄∗, ψ̄∗)−G(φ̄t, ψ̄t) ≤
1

σ4
(
G(φ̄t+1, ψ̄t+1)−G(φ̄t, ψ̄t)

)
.

Writing ∆t = G(φ̄∗, ψ̄∗)−G(φ̄t, ψ̄t), this can be expressed as

∆t ≤
1

σ4
(∆t −∆t+1)

or ∆t+1 ≤ (1 − σ4)∆t ≤ · · · ≤ (1 − σ4)t+1∆0, which was the first claim of
the theorem.

As (φ̄∗, ψ̄∗) solve the Schrödinger equations, we can follow the proof of
Lemma 6.31 to obtain

G(φ̄∗, ψ̄∗)−G(φ̄t, ψ̄t) ≥
σ

2

(
∥φ̄∗ − φ̄t∥2L2(µ) + ∥ψ̄∗ − ψ̄t∥2L2(ν)

)
and thus ∥φ̄∗−φ̄t∥2L2(µ)+∥ψ̄∗−ψ̄t∥2L2(ν) ≤

2
σ∆t. The second claim follows.
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