0. Introduction

How it started:

KLR Algebras $R_{n}(\Gamma)$
$L_{\text {Categorify }} u_{q}^{-}(g) \quad\left(=u_{q}^{-}\left(\hat{s} \hat{P}_{e}\right)\right)$
How it's going:
Integral Cycbotomic Heck algebra $H_{n}^{\wedge} \rightarrow$ dominant weight
\rightarrow Cellular basis $c_{s t}, \underline{s}, \pm \in \operatorname{Std}(\lambda)$
\longrightarrow Spent's $S^{\prime \prime}$, simples $D^{\prime \prime}$, Baver-Hompheys reciprocity.
\rightarrow Semisimplicity criterion
What's ahead.
$R_{n}^{\wedge}(\Gamma)=$ cyclotomic quotient of K LR
$\longrightarrow R_{n}^{\wedge}\left(\Gamma_{e}\right) \cong H_{n}^{\wedge} \quad$ "Graded Isomorphism Therm"
$\longrightarrow R_{n}^{\prime}\left(\Gamma_{e}\right)$ categrifies the simple $U_{q}(\hat{s} \hat{l})$-module $L(\Lambda)$ "Graded Categorifiatoon Theorem"
\rightarrow Projective indecomposables categorify the canonical basis of $L(\Lambda)$.
Today: 1. Upgrade cellularity to a graded versions
2. Introduce cyclotomic KLR algebras and their first properties.
3. Describe R_{n}^{n} folly in the semisimple care, via a graded cellular basis. \rightarrow Corollary: Graded Categorifiation Theorem in this case

Previous Notions:

A: cell abr algebra
(P, \geqslant) weight poet.
$\lambda \in P \Rightarrow T(\lambda)$ finite set
$C=\left\{c_{s t}: s, t \in T(\lambda), \lambda \in P\right\}$ caller basis

* antiinulution
$C^{\lambda} \in \operatorname{Mod}_{A}$ cell module, basis $\stackrel{\because}{\leftrightarrows} T(\lambda)$
\langle, \rangle on $C^{\lambda}, \quad D^{\lambda}=C^{\lambda} / \mathrm{rad} C^{\lambda} \stackrel{\mathcal{L}=}{\Leftarrow} \stackrel{\text { All the simple }(i f \neq 0)}{ }$
$D^{\mu} \rightarrow D^{M}$ projective corer
Braver-Humphers recipe.: $\quad\left[P^{M}: C^{\lambda}\right]=\left[C^{\lambda}: D^{\mu}\right]$

Example: integral cychtomic Heck e

$$
\begin{aligned}
& A=H_{n}^{\wedge}=\mathcal{Z} \cdot\left\{v^{ \pm 1}, T_{i}, L_{i}, Q_{i}=v^{* i}\right\} / / r_{s} \\
& \Lambda=\Lambda_{K_{1}(\operatorname{madc})}+\ldots+\Lambda_{k_{l}(\text { made })}
\end{aligned}
$$

$P_{n}^{n}=l$-meltipartions of $n \lambda \quad(\Pi, \nabla)$

$$
T_{i}^{*}=T_{i}, L_{i}^{*}=L_{i}, \quad v^{*}=v^{-1}, \quad c_{s t}^{*}=c_{s t}
$$

S^{λ} Sech module, basis $\left\{m_{t}: t \in S t d(\lambda)\right\}$

$$
D^{\lambda}=S^{\lambda} / \mathrm{rad}\left(S^{\lambda}\right)
$$

1. Graded Everything

Again take \mathcal{Z} be a commutative domain. Every module and algebra will be free or \mathcal{Z} with $\operatorname{dim}_{\mathcal{Z}}<\infty$.
Let $A=\bigoplus_{d \in \mathcal{Z}} A_{d}$ be a graded algebra. Let $\underline{A}=$ ungraded A.
A graded A-module M is an \underline{A}-module with a decomposition $M=\underset{d \in 2}{\oplus} M_{d}$ st. $A_{d^{\prime}} M_{d} \leqslant M_{d^{\prime}+d}$.
Sadly we set $M\langle s\rangle_{d}=M_{d-s}$.
The graded $\operatorname{Hom}_{\text {is }} \operatorname{Hom}_{A}(M, N):=\underset{s \in \mathcal{L}}{\bigoplus_{\mathcal{L}}} \operatorname{Hom}_{A}(M, N(s))$.
graded dim is $\operatorname{dim}_{q}(M)=\sum_{s \in \mathcal{Z}} q^{s} \operatorname{dim}_{\neq} H \operatorname{Hom}_{A}(M, N\langle s\rangle)$
Grin a simple graded A-module D, the grated decomportion number is $\quad[M: D]_{q}=\sum_{s \in \mathbb{Z}} q^{s}[M: D\langle s\rangle]$ let $\underline{M_{0}}$ be an ungraded \underline{A}-module. A graded f ff t is an A-module M sit. $\underline{M} \cong M_{0}$.

Proposition: any two graded lifts of a fo. indecomposable module over A are unique up to shift.
Proof: Recall the Fittry lemma: endomorphisms of finite length indecomposabbes are either isomorphisms or mipotent.
Now let M, N be A-modules with $\underline{M}, \underline{N} \cong U$. Now $\operatorname{Hom}^{\circ}(M, N)=\operatorname{Hom}(\underline{M}, \underline{N})=\operatorname{End}(U)$. In particlar, the identity map on U can be written as a finite sum $i d_{U}=\sum_{d \in \mathbb{Z}} \varphi_{d}$ with φ_{d} of degree d.
Assume every φ_{d} is nilpotent. Then $\left(i d_{u}\right)^{>N}=0$, absurd. So at least one φ_{d} is an isomorphism. (In fact, only ore) Definition (Graded cell datum): A graded cell datum (P, T, C) is one that comes equipped with a map (of sets) $\quad T(\lambda) \rightarrow \mathbb{Z} \quad \forall \lambda \in P$, and such that $c_{s t}$ is homogeneous of degree deg $(s)+\operatorname{deg}(t)$. Remark: moot things carry over: C^{λ} is the graded cell moult, its bilinear form has degree 0 , rad C^{λ} is a graded submourle, $D^{\lambda}=C^{\lambda} / \mathrm{rad} C^{\lambda}$ is graded, etc. As a corollary of the Proposition, we get that $\left\{D^{\lambda}\langle s\rangle: D^{\lambda} \neq 0\right\}$ is a complete at of graded simples.
Pelerant for us is the following: a graded cell filtration of M is $M=M_{0}>\ldots>M_{m}=0$ with $M_{i} / M_{i+1}=C^{\lambda}\left\langle s_{i}\right\rangle$. The cell moduk motiplicities and shifts are independent of the filtration and so we define $\left[M: C^{\lambda}\right]_{q}=\sum_{i: M / 1 /{ }^{2}} q^{s_{i}}$ $q \quad i=M_{1 / \mu_{i=1}}{ }^{2}=c^{\lambda}\langle s\rangle$ We abs have a notion of graded Braver-Humpheys reciprocity: $\left[P^{\prime \prime}: C^{\lambda}\right]_{q}=\left[C^{\lambda}: D^{11}\right]_{q}$.
2. Cycbtomic KLR algebras aka cyebtomic quier Hedle alfobras.

In the first leeture ue delined KLR aljebbas for a lap-less unorinted quires with no moltiple edges.
Reall that we had $R_{V}(\Gamma)=\bigoplus_{\tau i j \operatorname{SS}_{\text {S }}(\rho)} J R_{\nu}(\Gamma)_{i}$
(eg. aydic quier $\Gamma_{e}=$)
We also had baxes for $R_{i}(\Gamma)_{\Gamma}=\{$ diaguans from $\tilde{己}$ to $\vec{j}\}$ given by diagarans with dots at the bottom.
Define $\quad R_{n}(\Gamma)=\underset{|r|=n}{\oplus} R_{r}(\Gamma)$
Definition. let $\Lambda=\Lambda_{\bar{R}_{1}}+\ldots+\Lambda_{\bar{r}_{n}}$. The cyclotomic quier Hecke alyeba (or cyldomic KLR alobera) is

$$
R_{n}^{\wedge}(\Gamma)=\bigoplus_{|N|=n} R_{\nu}^{n}(\Gamma) /(\langle 1, \infty\rangle\rangle| |-|,\langle\Lambda, \infty\rangle,|-|, \cdots,\langle 1, \infty\rangle+|-|)
$$

Examples • let $n=1, \quad \Lambda=a_{1} \Lambda_{1}+\ldots+a_{c} \Lambda_{e}$
Then $R_{n}^{\wedge}(\Gamma)=R_{\alpha_{1}}^{\wedge}(\Gamma) /\left\langle\phi_{\alpha_{1}}\right\rangle \oplus \cdots \operatorname{R}_{\alpha_{e}}^{\wedge}(\Gamma) /\left(\phi_{\alpha_{e}}\right)=\mathcal{Z}[\phi] /\left(\phi_{c}\right) \oplus \cdots \oplus \mathcal{Z}[\phi] /\left(\alpha_{\alpha_{c}}\right)$
Conindentally, $H_{1}^{1}=\mathcal{Z}\left[L_{1}\right] /\left(L_{1}-v\right)^{a_{1}} \ldots\left(L_{1}-v^{\varepsilon}\right)^{a_{e}} \cong \mathcal{Z}\left[L_{1}\right] / L_{1}^{a_{1}} \oplus \ldots \notin \mathcal{Z}\left[L_{1}\right] / L_{e}^{a_{e}}$

- Let $n=2, \quad \Lambda=\Lambda_{1}+\Lambda_{2}, \nu=\alpha_{1}+\alpha_{2}, \quad \Gamma=\dot{\alpha}_{1} \dot{\alpha}_{2}$

Recall that $R=R_{\text {ato }}(\Gamma)$,

$$
{ }_{\alpha, 1, \alpha_{2}} R_{\alpha, \alpha_{2}} \oplus{ }_{j} R_{\alpha_{1} \alpha_{2}} \oplus{ }_{\alpha, 1} R_{2} R_{2} \alpha_{1} \oplus \oplus{ }_{\alpha_{2} \alpha_{1}} R_{\alpha_{2} \alpha_{1}}
$$

stoject to: $X=11, X=X, X=X$

$$
\cong M_{2}(Z[x, y])
$$

Now $R_{r}^{\Lambda_{r}(\Lambda)}(r)=M_{2}(Z[x, y]) /\left\langle[|1,| |]\rangle=M_{2}(\mathcal{Z})\right.$.
Conncientally, this has $\operatorname{dim}_{\neq}=4<\infty$.
3. R_{n}^{\wedge} is finite dimensional

Proposition: the title of the section holds.
Proof: Since we have bases with dots on the bottom, it suffices to shaw that every "dot diagram"

We induct on $t, t=1$ being clear from the definition of cyclotomic quotient.
For the inductive step, we have 3 cases:

- $\alpha_{i_{t}}+\alpha_{i_{+1}}:|\cdots| \oint_{N} \cdots\left|=\left|\cdots Y_{N} \ldots\right|=\left|\cdots \chi_{N} \cdots\right|\right.$ But $| \cdots|N| \cdots \mid=0$ for $N \gg 0$, we win.

Observe that it is enough to prove these for the two relevant strands.

$$
\begin{aligned}
& \text { - } \alpha_{i t}-\alpha_{i_{t+1}}: \quad\left|\phi_{2 N}=(|\phi+\phi|)\right| \phi^{2 N-1}-\phi \phi^{2 N-1} \\
& =\zeta_{2 n}-\left\{\oint_{2 n-1}\right. \\
& =2 n\}-\phi \phi^{2 n-1} \\
& =-d \phi_{2 n-1} \\
& =\cdots= \pm \phi_{v} \phi_{N}
\end{aligned}
$$

- $\alpha_{i_{t}}=\alpha_{i_{++1}}$: exercise.

Remark: The above proof uses the conventions in [KL], but for this section we are following [M], which gives the following (Rouquier) presentation:

In fact, one can generalize the definition to amp quiver by means of a matrix with entries in $\mathcal{Z}[u, v]$ dented $Q=\left(Q_{i j}\right)$ with $Q_{i i}=0, Q_{i j} \not x 0, Q_{i j}(u, v)=Q_{j i}(v, a)$, deg $Q_{i j}=r$, where $i+j$

Then the relations are the same except

$$
\begin{aligned}
& \psi_{r}^{2} e(\mathbf{i})=Q_{i_{r}, i_{r+1}}\left(y_{r}, y_{r+1}\right) e(\mathbf{i}) \\
& \left(\psi_{r} \psi_{r+1} \psi_{r}-\psi_{r+1} \psi_{r} \psi_{r+1}\right) e(\mathbf{i})= \begin{cases}\frac{Q_{i r, i_{r+1}}\left(y_{r}, y_{r+1}\right)-Q_{i_{r}, i_{r+1}}\left(y_{r}, y_{r+1}\right)}{y_{r+2}-y_{r}}, & \text { if } i_{r+2}=i_{r}, \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

One recovers the (first) Khoranov-Lacda definition setting $Q_{i j}=u^{-c_{i j}}+v^{-c_{j i}}$

We stick to $\Gamma=\Gamma_{e}$ for the rest of the talk.
4. Representation theory of $R_{n}{ }_{n}$, smisimple case

Recall that H_{n}^{Λ} was semisimple if writing $\Lambda=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$ in the basis of fundamental weights, no consecutive n-string contains more than a 1 : "Par apart".

Mathas defines $\alpha_{i, n}=\alpha_{i}+\ldots+\alpha_{i+n-1}$ and requires $\left\langle\Lambda, \alpha_{i, n}\right\rangle \leqslant 1 \quad v_{i}$.
We make the same assumption here. A posterior, this implies R_{n}^{1} is $s s$, bot we do not assume so.
Recall that if $\mathcal{Z}=F$ is a field, $\left\{1\right.$ reps of $H_{n}^{\lambda}(s s) \mid \longleftrightarrow\left\{S^{\lambda}: \lambda 1\right.$-mutipatition of $\left.n\right\}$
So we hope that the following holds.
Proposition: Let $\partial=F, e>n$ and $\langle\Lambda, \alpha, n\rangle \leqslant 1 \quad \forall i$. Then for each $\lambda \stackrel{\ell}{\bullet} n$ there is a unique simple graded R_{n}^{Λ}-module S^{λ} with homogeneous basis $\left\{\varphi_{\underline{t}}: \underline{t} \in \operatorname{Std}(\lambda)\right\}$.

Furthermore $\operatorname{deg} \varphi_{\underline{t}}=0 \forall \underline{t}$ and the action is given by:

$$
\varphi_{t} \cdot e(i)=\delta_{i, j, t} \varphi_{t}, \quad \varphi_{t} y_{r}=0, \quad \varphi_{\underline{t}} \cdot \psi_{r}=\varphi_{s \cdot t}
$$

Here, given $\underline{t} \in \operatorname{Std}(\mathbb{\lambda}), \underline{\underline{i}}^{\underline{t}}=\left(c_{1}(t)(\bmod e), \ldots, c_{n}(\underline{t})(\bmod e)\right) \quad$ "residue sequence of t " \ln turn, $c_{r}(\underline{t})$ is given by: $t=\left(\mathbb{T}, ~ \mathbb{E}, \ldots, \frac{\sqrt[n]{4!}}{\frac{n}{4!}}, \ldots\right.$,)
e)

$$
\Rightarrow C_{r}(\underline{t})=K_{l}+h-v
$$

We denote the set of all such sequences by I_{n}^{n}.
Combinatorial Lemma: Assume again $e>n$ and $\langle\Lambda, \alpha, n\rangle \leqslant 1 \quad \forall i$. Then:
a) For any $t, s \in \operatorname{Std}\left(P_{n}^{1}\right), \quad \underline{t}=\underline{s}$ if $\underline{i}^{t}=\underline{i}^{2}$.
b) If $i \in I_{\wedge}^{n}$, then $i_{1} \neq i_{r+1}$.
c) If $\underline{i} \in I_{\Lambda}^{n}$ has $i_{r+1}=i_{r} \pm 1$ for some r, then $s_{r} \cdot \underline{i} \notin I_{\Lambda}^{n}$.
d) If $\underline{i} \in I_{\Lambda}^{n}$, then $(i, i \pm 1, i)$ is not a (consecutive) subsequence of \underline{i}.

Prof: a) Induction on n. For $n=1, P_{n}^{\wedge}=\left\{\frac{\left(\phi, \ldots, \phi, p_{j}, \phi, \ldots, \phi\right)}{c_{1}=k_{j}}: j=1, \ldots, \ell\right\} \Rightarrow I_{n}^{1}=\left\{k_{j}: k_{1}=1, \ldots, p\right\}$
Assume $t \in \operatorname{Std}(\lambda)$ is the unique tableau in $S t d\left(P_{m}^{n}\right)$ with a given $\underline{i}^{ \pm} \in I_{\Lambda}^{m}$.
and take $\underline{i}^{ \pm} \cup\left\{i_{m+1}\right\} \in S t d\left(P_{m+1}^{1}\right)$. Then $C_{m+1}(t)=k_{p}+h-v \equiv i_{m+1} \operatorname{mode} \Rightarrow f!"$ addabke"node with a given content.
b) If $i_{r}=i_{r+1}$, then r and $r+1$ lie on the same partition inside λ. Now we have ' 'a
c) Similarly, of two consecutive contents differ by 1 , they must $l i e$ in the same partition inside λ. By definition of the content, r and $r+1$ are in the same column/row, making $S_{r} \cdot \underline{t}$ not standard.
d) Similar.

Proof of the Proposition:
Recall we set

$$
\varphi_{\underline{t}} \cdot e(\underline{i})=\delta_{\underline{i}, \underline{t}^{t}} \varphi_{\underline{t}}, \quad \varphi_{t} y_{r}=0, \quad \varphi_{\underline{t}} \cdot \psi_{r}=\varphi_{\underline{t}(r, r+1)}
$$

(Discuss:)

$$
\begin{aligned}
e(\mathbf{i}) e(\mathbf{j}) & =\delta_{\mathbf{i j}} e(\mathbf{i}), \checkmark \underline{t} \Leftrightarrow \underline{i}^{\underline{t}} & \sum_{\mathbf{i} \in I^{\beta}} e(\mathbf{i}) & =1, \checkmark \underline{t} \Leftrightarrow \underline{\underline{i}}^{ \pm} \\
y_{r} e(\mathbf{i}) & =e(\mathbf{i}) y_{r}, \checkmark \circ & \psi_{r} e(\mathbf{i}) & =e\left(s_{r} \cdot \mathbf{i}\right) \psi_{r}, \checkmark \text { def of } \psi_{r} \quad y_{r} y_{s}=y_{s} y_{r}, \checkmark \circ
\end{aligned}
$$

$$
\begin{align*}
& \psi_{r} \psi_{s}=\psi_{s} \psi_{r}, \checkmark \text { def } \\
& \psi_{r} y_{s}=y_{s} \psi_{r}, \checkmark 0 \\
& \psi_{r} y_{r+1} e(\mathbf{i})=\left(y_{r} \psi_{r}+\delta_{i_{r} i_{r+1}}\right) e(\mathbf{i}), \quad \text { if } s \neq r, r+1, \tag{2.2.2}\\
& y_{r+1} \psi_{r} e(\mathbf{i})=\left(\psi_{r} y_{r}+\delta_{i_{r i r+1}}\right) e(\mathbf{i}), \\
& \psi_{r}^{2} e(\mathbf{i})= \begin{cases}\left(y_{r+1}-y_{r}\right)\left(y_{r}-y_{r+1}\right) e(\mathbf{i}), & \text { if } i_{r} \rightleftarrows i_{r+1}, \\
\left(y_{r}-y_{r+1}\right) e(\mathbf{i}), & \text { if } i_{r} \rightarrow i_{r+1}, \\
\left(y_{r+1}-y_{r}\right) e(\mathbf{i}), & \text { if } i_{r} \leftarrow i_{r+1}, \quad \text { R HS }=0 \quad \text { HS }=0 \\
0, & \text { if } \left.i_{r}=i_{r+1}, \quad \checkmark \text { (never }\right) \\
e(\mathbf{i}), & \text { otherwise }, \quad \checkmark \quad \text { (del) }\end{cases}
\end{align*}
$$

and $\left(\psi_{r} \psi_{r+1} \psi_{r}-\psi_{r+1} \psi_{r} \psi_{r+1}\right) e(\mathbf{i})$ is equal to

$$
\begin{cases}\left(y_{r}+y_{r+2}-2 y_{r+1}\right) e(\mathbf{i}), & \text { if } i_{r+2}=i_{r} \rightleftarrows i_{r+1}, \tag{2.2.4}\\ -e(\mathbf{i}), & \text { if } i_{r+2}=i_{r} \rightarrow i_{r+1}, \\ e(\mathbf{i}), & \text { if } i_{r+2}=i_{r} \leftarrow i_{r+1}, \\ 0, & \text { otherwise, } \checkmark \text { braver) by d) }{ }^{\text {or } S_{r}, s_{r+1}}\end{cases}
$$

for $\mathbf{i}, \mathbf{j} \in I^{\beta}$ and all admissible r and s.
Now b) implies $c_{i r, i r+1}=0$ so $\operatorname{deg} e\left(i^{t}\right) \cdot \psi_{r}=0 \Rightarrow \operatorname{Set} \operatorname{deg}\left(\varphi_{t}\right)=0$ for all t. This shows that S^{λ} is a graded $R_{n}^{n}\left(\Gamma_{e}\right)$-module.

Proof of simplicity: let $M \leq S^{\lambda}$ be nonzero and take a nonzero $m=\sum_{ \pm_{ \pm}} \mu_{ \pm} \varphi_{ \pm}$. Chook a nonzero summand $M_{ \pm} \varphi_{ \pm}$.
Then $m e(t)=\mu_{ \pm} \varphi_{\underline{E}} \Rightarrow \varphi_{\underline{E}} \in M$. Now for any other $\underline{s} \in \operatorname{Std}^{(\lambda)} \mathrm{J}_{\omega} \in S_{n}$ st. $\omega \cdot \underline{t}=\underline{s}$. So $\varphi_{\underline{s}}=\varphi_{\underline{t}} \cdot \psi_{w} \in M$.
Hence $M=S^{\lambda}$ is
Next, we show that R_{n}^{1} is graded cellubar. We need a lemma:
Vanishing lemma: The following vanish:
a) The "idempotent generators" $e(i)$ whenever $i \notin I_{n}^{n}$.
b) The "dot" generators y.

Proof of a) is omitted, it comes down to a detailed study of the ret I_{Λ}^{n} a la OKoukkor-Vershik.
b) Sine $\sum_{i \in \pm^{n}} e(i)=1$, by a) it suffices to show that y_{r} kills $e(\underline{i})$ for $\underline{i}_{b_{r}} \in I_{\Lambda}^{r}$. (Induct on r)

$$
\begin{aligned}
& \text { the previous fermata. } \\
& \text { - If } i_{r-1}+i_{s}: \quad y \operatorname{e} e(\underline{i})=\left.|\cdots|_{i+1}\right|_{i r} \cdots|=| \cdots \underset{i+1}{ } \quad \text { ir }\left.^{X}\right|_{\text {induction }} 0 \text {. }
\end{aligned}
$$

(The fact that these are the only two cases also follows from the proof of a))

We are ready to prove the cellularity theorem.
Define the elements $e_{\underline{s}, \underline{t}}=\psi_{d(\underline{s})^{-1}} e\left(\underline{i}^{\underline{N}}\right) \psi_{d(\underline{t})}$, where $\underline{i}^{\underline{\lambda}}=\underline{\underline{t}}^{\underline{t}^{\prime}}$, and $\underline{t}^{\lambda} \in \operatorname{Std}(\lambda)$ is the tableau

Theorem: Let $e>n$ and Λ sit. $\left\langle\Lambda, \alpha_{i, n}\right\rangle \leq 1 \forall i$. Then R_{n}^{\wedge} is graded cellular with graded cellar basis

$$
\left\{e_{\underline{s t}}: \underline{s}, \underline{t} \in \operatorname{Std}(\mathbb{\lambda})\right\} \text {, and } \operatorname{deg}\left(e_{\underline{s}, t}\right)=0 \text {. }
$$

Proof: By the Vanishing Lemma, $R_{n}^{\wedge}\left(\Gamma_{e}\right)$ is spanned by ψ_{+}^{\prime} s and $e(i)$'s.
Also, since

' 0 , the ψ_{t}^{\prime} 's satisfy the braid relations.

Furthermore, the relation $\psi_{r} e(\mathbf{i})=e\left(s_{r} \mathbf{i}\right) \psi_{r}$, allows us to write every product as $\psi_{u} e(\underline{i})=\psi_{u} e(i \hat{i}) \psi_{d(t)}$ for $u \in S_{n}$.

Next, note that the cements of the form $e_{\underline{s}, t}=\psi_{\delta^{-1}(\underline{s})}\left(e\left(\underline{\underline{l}^{\prime}}\right)\right) \psi_{d(\xi)} \quad$ dread span, since

$$
\begin{array}{r}
\psi_{u} e\left(\underline{\underline{N}}^{\wedge}\right) \psi_{\omega}=\sum_{\underline{j} \in I^{n}} e(\underline{j}) \psi_{u} e\left(\underline{i}^{\lambda}\right) \psi_{\omega}=\sum_{\underline{j} \in I_{n}^{n}} \delta_{u \underline{j}, \underline{i}^{\wedge}} e\left(\underline{i}^{\lambda}\right) \psi_{\omega} \\
\underline{1} \| u=d^{-1}\left(\underline{t}^{\lambda}\right)
\end{array}
$$

In particular, $r_{j} R_{r}^{\wedge} \leqslant \sum_{\lambda \in P_{!}^{\prime}}|\operatorname{std}(\lambda)|^{2}=l^{n} n!$ combinatorial fact.

On the other hand, let $K=\overline{\operatorname{Frac}(\mathcal{Z})}$, and write $R_{n}^{\wedge}(K)=R_{1}^{\wedge} \otimes \mathcal{\nexists} K$. Let $J\left(R_{n}^{\wedge}(K)\right)$ be the Jacobson radical. By the Proposition, we constructed Specht modules S'. Thee are pairwise nonisomorphic ungraded modules (look at the action of $e\left(\underline{i}^{\wedge}\right)$) and so by Fitting $S^{\lambda} \cong S^{H}\langle d\rangle \Rightarrow \lambda=\mu, d=0$. By Wedderborn,

$$
\ell^{n} n!\geqslant \operatorname{dim} R_{n}^{n}(K) / J\left(R_{n}^{n}(K)\right) \geqslant \sum_{\lambda \in P_{n}}\left(\operatorname{dim} S^{n}\right)^{2}=\sum_{\lambda \in P_{n}}|S \operatorname{st}(\lambda)|^{2}=l^{n} n!.
$$

Therefore we have equalities, hence semisimplicity and the $e_{\underline{s}}, \underline{\underline{1}}$ form a basis over \mathcal{Z} !
Furthermore, $e_{\underline{s, t}} \cdot e_{\underline{y, v}}=\delta_{t, y} e_{\Sigma, \underline{w}}$ so R_{n}^{n} is a sum of matrix rings of sizes $|S t d(\lambda)|$. Cellularity follows Regarding the grading, we need to show $\operatorname{deg}\left(e_{s, t}\right)=0$. This is easy: a typical element $\psi_{r} e(i), i \in I_{\wedge}^{n}$ has $i_{r}+i_{r+1}($ Combinatorial lemma) $)$, so $\operatorname{deg}\left(\psi_{r} e(i)\right)=-c_{r, i r+1}=0$ a

To conclude, using the machinery of last time one shows:
1.6.7. Theorem (Hu-Mathas [57]). Suppose that $\mathcal{Z}=K$ is a field and that \mathscr{H}_{n} is content separated and that
$\left\{f_{\mathrm{st}} \mid(\mathrm{s}, \mathrm{t}) \in \operatorname{Std}^{2}\left(\mathcal{P}_{n}^{\Lambda}\right)\right\}$ is a seminormal basis of \mathscr{H}_{n}. Then $\left\{f_{\mathrm{st}}\right\}$ is a cellular basis of \mathscr{H}_{n} and there exists
a unique seminormal coefficient system $\boldsymbol{\alpha}$ such that

$$
f_{\mathrm{st}} T_{r}=\alpha_{r}(\mathrm{t}) f_{\mathrm{sv}}+\frac{1+\left(v-v^{-1}\right) c_{r+1}^{\mathcal{Z}}(\mathrm{t})}{c_{r+1}^{z}(\mathrm{t})-c_{r}^{Z}(\mathrm{t})} f_{\mathrm{st}},
$$

where $\mathrm{v}=\mathrm{t}(r, r+1)$. Moreover, if $\mathrm{s} \in \operatorname{Std}(\boldsymbol{\lambda})$ then $F_{\mathbf{s}}=\frac{1}{\gamma_{\mathrm{s}}} f_{\mathrm{ss}}$ is a primitive idempotent and $\underline{S}^{\boldsymbol{\lambda}} \cong F_{\mathrm{s}} \mathscr{H}_{n}$ is
irreducible for all $\boldsymbol{\lambda} \in \mathcal{P}_{n}^{\Lambda}$.

Corollary: The map $\Theta: R_{n}^{\wedge}\left(\Gamma_{c}\right) \longrightarrow H_{n}^{\wedge} \quad$ cuffed by

$$
\begin{aligned}
& e\left(i^{3}\right) \mapsto F_{\Sigma} \\
& \psi_{r}\left(\underline{I}^{s}\right) \mapsto \frac{1}{\alpha_{r}(\underline{s})}\left(T_{r}-\frac{c_{r=}^{7}(\underline{s})-c_{r}^{7}(s)}{1+\left(v-v^{-1}\right) c_{r 1}^{z}(s)}\right) F_{s}
\end{aligned}
$$

is an isomorphism.
Proof: direct check.

