0. Introduction

How it started:

KLR Algebras $R_n(f)$ L (ategorify $U_q(g)$ (= $U_q(sk)$)

How it's going:
Integral Cyclotomic Hecke algebra
$$H_n^{\Lambda}$$
, dominant weight
L Cellular basis $c_{\underline{st}}$, $\underline{s}, \underline{t} \in Std(\lambda)$
L Specht's S^{Λ} , simples D^{Λ} , Bewer-Humphreys reciprocity.
L Semisimplicity criterion

What's ahead.

Previous Notions.

$$(P, P)$$
 weight poset.
 $\lambda \in P \Rightarrow T(\lambda)$ finite set
 $C = \frac{1}{2}C_{st} = s, t \in T(\lambda), \lambda \in P$ (collider boosis

* antiinvolution
$$T_i^*$$

 $C^{\lambda} \in Hod_{A}$ cell module, bosis $\stackrel{\text{III}}{\longrightarrow} T(\lambda)$ S^{λ}
 $K, > \text{ on } C^{\lambda}, \quad D^{\lambda} = \frac{C^{\lambda}}{rad} C^{\lambda} \stackrel{\text{Z}=F}{\leftarrow} All \text{ the simples (if $\neq 0$) D^{λ}
 $P^{\mu} \longrightarrow D^{\mu}$ projective cover
Braver - Humphreys recip.: $[P^{\mu}: C^{\lambda}] = [C^{\lambda}: D^{\mu}]$$

Example: integral cyclotomic Hecke

$$A = H_{n}^{A} = 2 \cdot \frac{1}{2} v_{1}^{s_{1}} T_{i} L_{i}, Q_{i} = v_{i} \frac{1}{2} \frac{1$$

1. Graded Everything

Again take Z be a commutative domain. Every module and algebra will be free over Z with dim₂ < ∞ . Let $A = \bigoplus_{d \in \mathcal{U}} A_d$ be a graded algebra. Let $\underline{A} = ungraded A$. A graded A-module M is an <u>A</u>-module with a decomposition $M = \bigoplus_{d \in \mathbb{Z}} M_d$ st. $A_d : M_d \subseteq M_{d+d}$. Sodly we set M(s>d = Hd-s. The greaded Horn is Hom (M, N) = (D) Horn (M, N(s)). graded dim is $\dim_{\mathfrak{A}}(M) = \sum_{s \in \mathcal{Z}} q^s \dim_{\mathfrak{A}}(M, N(s))$ Given a simple graded A-module D, the graded decomposition number is $[M:D]_q = \mathbb{Z} q^s [M:D(s)]$ Let $\underline{M}_{\mathcal{O}}$ be an ungraded \underline{A} -module. A graded lift is an \underline{A} -module \underline{M} s.t. $\underline{M} \cong \underline{M}_{\mathcal{O}}$. Proposition: any two graded lifts of a fg. indecomposable module over A are unique up to shift. Proof: Recall the Fitting Lemma: endomorphisms of finite length indecomposables are either isomorphisms or nilpstent. Now let M, N be A-modules with $\underline{H}, \underline{N} \in U$. Now $\operatorname{Hom}^{\bullet}(\underline{H}, \underline{N}) = \operatorname{Hom}(\underline{H}, \underline{N}) = \operatorname{End}(\underline{U})$. In particular, the identity map on U can be written as a finite sum $id_u = \sum P_d$ with P_d of degree d. Assume every Pd is inflootent. Then $(id_u)^{N} = 0$, abourd. So at least one Pd is an isomorphism. (In fact, only one) Definition (Graded cell datum): A graded cell datum (P, T, C) is one that comes equipped with a map (if sets) $T(A) \rightarrow \mathbb{Z}$ $\forall \lambda \in \mathbb{P}$, and such that C_{st} is homogeneous of degree deg(s) + deg(t). Remark: most things carry over: C' is the graded cell module, its bilinear form has degree 0, rad C' is a graded evolved, $D' = C'/rad C^{\lambda}$ is graded, etc. As a corollary of the Proposition, we get that $d D^{\lambda}(s) = D^{\lambda} \neq 0.9$ is a complete set of graded simples. Pelevant for us is the following: a graded cell filtration of M is $M = M_0 > \dots > M_m = 0$ with $M_i \neq C^{\lambda} < s_i > \dots > M_m = 0$ with $M_i \neq C^{\lambda} < s_i > \dots > M_m = 0$ The cell module multiplicities and shifts are independent of the filtration and so we define $\mathbb{L}M: \mathbb{C}^{^{n}}J_{^{n}} \cong \mathbb{Z} \xrightarrow{q^{n}}{}^{^{n}}$ We also have a notion of graded Braver - Humphreys reciprocity: $[P^n: C^{\lambda}]_q = [C^{\lambda}: D^n]_q$.

- 2. Cyclotomic KLR algebras aka cyclotomic quiver Heake algebras.
 - In the first lecture we defined KLR algebras for a loop-less unoriented quiver with no multiple edges. Pecall that we had $R_{ir}(\Gamma) = \bigoplus_{\substack{\mathcal{O} \ \mathcal{O}} \ \mathcal{O}} \frac{1}{\mathcal{P}} R_{ir}(\Gamma)_{\mathcal{O}}$ (e.g. cyclic quiver $\Gamma_e = e_{ir}(\Gamma)$) We also had bases for $\frac{1}{\mathcal{P}} R_{ir}(\Gamma)_{\mathcal{F}} = 1$ diagrams from \mathcal{O} to \mathcal{F} given by diagrams with dots at the bottom. Define $R_n(\Gamma) = \bigoplus_{\substack{\mathcal{O} \ \mathcal{O}}} R_{ir}(\Gamma)$

 $\begin{aligned} & \text{Definition. let } \Lambda = \Lambda_{\overline{\kappa}_1} + \ldots + \Lambda_{\overline{\kappa}_n}. \text{ The cyclotomic quiver Hecke algebra (or cyclotomic KLR algebra) is} \\ & R_n^{\Lambda}(\Gamma) := \bigoplus_{|r|=n} R_{rr}^{\Lambda}(\Gamma) / (\langle \Lambda, u, \rangle \underbrace{1}_{-}|, \langle \Lambda, u_2 \rangle \underbrace{1}_{-}|, \ldots, \langle \Lambda, u_n \rangle \underbrace{1}_{-}|, \ldots,$

Examples • let n=4,
$$\Lambda = \alpha_{1}\Lambda_{1} \cdot \dots + \alpha_{n}\Lambda_{n}$$

Then $R_{n}^{\Lambda}(\Gamma) = R_{n_{1}}^{\Lambda}(\Gamma) / \langle \downarrow \downarrow \downarrow \rangle = \dots \oplus R_{n_{n}}^{\Lambda}(\Gamma) / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow \downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow] / (\downarrow \downarrow) = \mathbb{Z}[\downarrow] / (\downarrow \downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow] / (\downarrow \downarrow \downarrow) = \mathbb{Z}[\downarrow] / (\downarrow \downarrow] = \mathbb{Z}[\downarrow] / (\downarrow \downarrow) = \mathbb{Z}[\downarrow] / (\downarrow] = \mathbb{Z}[\downarrow] / (\downarrow \downarrow] =$

3. R_n^{Λ} is finite dimensional

Proposition: the title of the section holds.

Proof: Since we have bases with dots on the bottom, it suffices to show that every "dot diagram" $|\dots |\dots |$ is nilpotent. We induct on t, t=1 being cleaver from the definition of cyclotomic quotient. For the inductive step, we have 3 cases:

• $\alpha'_{i_{1}} \neq \alpha'_{i_{1}}$ \cdots $| \cdots \rangle = | \cdots \rangle | \cdots | = | \cdots \rangle | \cdots | = 0$ for N>O, we win.

Observe that it is enough to prove these for the two relevant strands.

•
$$\alpha'_{ij}$$
 $\longrightarrow \alpha'_{ijk}$ $(2N = (|++|)| + 2N-1 - (+2N-1)$
 $= \sum_{n=2N}^{\infty} - (+2N-1)$
 $= 2N = -(+2N-1)$
 $= -(+2N-1)$
 $= -(+2N-1)$
 $= -(+2N-1)$
 $= -(+2N-1)$

• $\alpha'_{i_{t}} = \alpha'_{i_{t+1}}$: exercise.

D

Remark: The above proof uses the conventions in [KL], but for this section we are following E^{H} , which gives the following (Raxquier) presentation:

$\begin{split} e(\mathbf{i})e(\mathbf{j}) &= \delta_{\mathbf{i}\mathbf{j}}e(\mathbf{i}),\\ y_r e(\mathbf{i}) &= e(\mathbf{i})y_r, \end{split}$	$\begin{split} \sum_{\mathbf{i}\in I^{\beta}} e(\mathbf{i}) &= 1, \\ \psi_r e(\mathbf{i}) &= e(s_r \cdot \mathbf{i}) \psi_r, \end{split}$	$y_r y_s = y_s y_r,$	$e(\underline{i}) = \left \begin{array}{c} \cdots \\ \vdots \\$	deg V
	$\psi_r\psi_s=\psi_s\psi_r,$	if r-s > 1,	2	
	$\psi_r y_s = y_s \psi_r$,	$if s \neq r, r + 1,$		
(2.2.2)	$\psi_r y_{r+1} e(\mathbf{i}) = (y_r \psi_r + y_{r+1} \psi_r e(\mathbf{i})) = (\psi_r y_r + y_r)$	$\delta_{i_r i_{r+1}} e(\mathbf{i}),$ $\delta_{i_{-i_{r+1}}} e(\mathbf{i}),$	14 ₂ = ∨	dec $\Psi_r e(\underline{i}) = -C_{ir,ir+A}$
	$\int (y_{r+1} - y_r)(y_r - y_{r+1})(y_r - y_{r+1})(y$	$(i), if i_r \rightleftharpoons i_{r+1},$		-3
(0.0.2)	$(y_r - y_{r+1})e(\mathbf{i}),$	if $i_r \to i_{r+1}$,	5 r ¥+4	
(2.2.3)	$\psi_r^* e(\mathbf{i}) = \begin{cases} (y_{r+1} - y_r)e(\mathbf{i}), \\ 0 \end{cases}$	if $i_r \leftarrow i_{r+1}$, if $i_r = i_{r+1}$.		
	$e(\mathbf{i}),$	otherwise,	1	1. 0
and $(\psi_r\psi_{r+1}\psi_r - \psi_{r+1}\psi_r\psi_{r+1})e(\mathbf{i})$ is equal to			yr = ··· • ···	ckeg 2
(2.2.4)	$(y_r + y_{r+2} - 2y_{r+1})e(\mathbf{i}),$	$if i_{r+2} = i_r \rightleftharpoons i_{r+1},$		v
	$\begin{cases} -e(\mathbf{i}), \\ e(\mathbf{i}), \end{cases}$	$ij i_{r+2} = i_r \rightarrow i_{r+1},$ $if i_{r+2} = i_r \leftarrow i_{r+1},$	•	
	0,	otherwise,		

for $\mathbf{i},\mathbf{j}\in I^\beta$ and all admissible r and s

In fact, one can generalize the definition to any quiver by means of a matrix with entries in Z [u,v]denoted $Q = (Q_{ij})$ with $Q_{ii} = 0$, $Q_{ij} \neq 0$, $Q_{ij}(u,v) = Q_{ji}(v,u)$, deg $Q_{ij} = r$, where i - jThen the relations are the same except

$$\psi_r^2 e(\mathbf{i}) = Q_{i_r, i_{r+1}}(y_r, y_{r+1})e(\mathbf{i})$$

$$(\psi_r\psi_{r+1}\psi_r - \psi_{r+1}\psi_r\psi_{r+1})e(\mathbf{i}) = \begin{cases} \frac{Q_{i_r,i_{r+1}}(y_r,y_{r+1}) - Q_{i_r,i_{r+1}}(y_r,y_{r+1})}{y_{r+2} - y_r}, & \text{if } i_{r+2} = i_r, \\ 0, & \text{otherwise.} \end{cases}$$

One recovers the (first) Khovanov-Lauda definition setting $Q_{ij} = u^{Cij} + v^{-Cjc}$

We stick to $\Gamma = \Gamma_e$ for the rest of the talk.

- 4. Representation theory of Rin, semisimple case
 - Recall that H_n was semisimple if writing $\Lambda = (a_1, a_2, a_3, \dots, a_n)$ in the basis of fundamental weights, no consecutive n-string contains more than a 1: "far apart". Mathas defines $\alpha_{i,n} = \alpha_{i+1} + \alpha_{i+n-1}$ and requires $\langle \Lambda, \alpha_{i,n} \rangle \leq \Delta$ Vi. We make the same assumption here. A posteriori, this implies R_n^{\prime} is ss, but we do not assume so. Recall that if $\mathcal{F} = F$ is a field, { (neps of $H_n^{\Lambda}(ss) \mapsto \{S^{\Lambda} : \lambda\}$ (-multipartition of n } So we hope that the following holds. Proposition: let $\mathcal{Z}=F$, e>n and $\langle \Lambda, \alpha_{i,n} \rangle \leq 1$ Vi. Then for each $\mathcal{X} \vdash n$ there is a unique simple graded R_n^{\prime} -module S^{λ} with homogeneous basis $\{ \Psi_{\pm} : \pm \in \text{Std}(\lambda) \}$ Furthermore deg $P_{\underline{t}} = 0$ $\forall \underline{t}$ and the action is given by: if Sr. t not diandoed $\Psi_{\underline{t}} \cdot e(\underline{i}) = \delta_{\underline{i},\underline{i}^{t}} \Psi_{\underline{t}}, \quad \Psi_{\underline{t}} Y_{r} = O, \quad \Psi_{\underline{t}} \cdot \Psi_{r} = \Psi_{\underline{s},\underline{t}}$ Here, given $\pm \in Std(A)$, $\underline{i}^{\pm} = (C_1(\pm) \pmod{e}, \dots, C_n(\pm) \pmod{e})$ "residue sequence of \pm " In turn, $C_r(\underline{t})$ is given by: $\underline{t} = \left(\underbrace{H}_{1}, \underbrace{H}_{2}, \ldots, \underbrace{H}_{r}, \ldots, \underbrace{H}_{r} \right)$ => Cr(1)= Ke + h-v We denote the set of all such sequences by I_{Λ}^{*} . Combinatorial Lemma: Assume again e>n and <A, dun > <1 Vi. Then: a) For any $\pm , s \in Std(P^{\Lambda}_{n})$, $\pm = s$ if $i^{\pm} = i^{\pm}$. b) If iEIn, then it = istan c) If $i \in \mathbb{T}_{A}^{n}$ has $i_{r+2} = i_{r} \pm 1$ for some r, then $s_{r} \cdot i \notin \mathbb{T}_{A}^{n}$. d) $| \underline{i} \in \mathbb{I}^n_{\Lambda}$, then $(i, i \pm 1, i)$ is not a (consecutive) subsequence of \underline{i} .

Proof: a) Induction on n. For n=1, Pⁿ = {(#,...,#, □, #,...,#) : j=4,...,#s ⇒ Iⁿ = {K_j : K_k=4,...,#s
Assume ± ∈ Std(A) is the unique tableau in Std (Pⁿ_m) with a given i= ∈ I^m.
and take i= Utim=1 ∈ Std (Pⁿ_{min}). Then C_{min}(±) = K_k+h-v = ima mode => fl^{*} addable^{*} node K_k's one for apart
b) If ir = iran, then r and r+1 lie on the some partition inside A. Now we have □ = mode A.
c) Similarly, if two consecutive contents differ by 1, they much lie in the some partition inside A.
By definition of the content, r and r+1 are in the some collumn /row, making Sr.± not standard.
d) Similar.

Proof of the Proposition: Recall we set

 $\Psi_{\underline{t}} \cdot e(\underline{i}) = \delta_{\underline{i}, \underline{i}^{\underline{t}}} \Psi_{\underline{t}}, \quad \Psi_{\underline{t}} Y_{\underline{r}} = \mathcal{O}, \quad \Psi_{\underline{t}} \cdot \Psi_{\underline{r}} = \Psi_{\underline{t}}(\underline{r}, \underline{r+a}).$

(Discuss :)

for $\mathbf{i}, \mathbf{j} \in I^{\beta}$ and all admissible r and s.

Now b) implies $C_{ir,irre} = 0$ so deg $e(\underline{i}\underline{\epsilon}) \cdot \Psi_r = 0 \implies \text{Set deg}(\Psi_{\underline{\epsilon}}) = 0$ for all $\underline{\epsilon}$. This shows that S^{*} is a graded $R_n^{\wedge}(P_e) - \text{module}$. Proof of simplicity: let $M \subseteq S^{N}$ be nonzero and take a nonzero $m = \underset{\underline{f}}{\Sigma} M_{\underline{f}} Y_{\underline{f}} Y_{\underline{f}}$. Choose a nonzero summand $M_{\underline{f}} Y_{\underline{f}}$. Then $m e(\underline{f}) = M_{\underline{f}} Y_{\underline{f}} \Rightarrow Y_{\underline{f}} \in M$. Now for any other $\underline{s} \in Std(M)$ $\exists w \in S_{n}$ st. $w \cdot \underline{f} = \underline{s}$. So $Y_{\underline{s}} = Y_{\underline{f}} \cdot Y_{w} \in M$. Hence $M = S^{N}$ is

Next, we show that Rn is graded cellubr. We need a lemma:

Vanishing Lemma: The following vanish: a) The "idempotent generators" $c(\underline{i})$ whenever $\underline{i} \notin I_{\Lambda}^{*}$.

Proof of a) is annihiled, it comes down to a detailed study of the set I_{Λ}^{n} a la Okaunkov-Vershik.

b) Since
$$\sum_{i \in I^n} e(i) = 1$$
, by a) it suffices to show that y_i kills $e(i)$ for $i_j \in I^r_A$. (Induct on r).
• If $i_{r-1} = i_r \pm i$: $y_r e(\underline{i}) = [\cdots]_{i_r \pm 1} i_r$ $i_{i_r \pm 1} i_r$ i_r $i_r = i_r$ $i_r = i_r$

We are very to prove the cellularity theorem. Define the elements $e_{\underline{s},\underline{t}} = \Psi_{d(\underline{s})} \cdot e(\underline{i}^{\underline{A}}) \Psi_{d(\underline{t})}$, where $\underline{i}^{\underline{A}} = \underline{i}^{\underline{t}^{A}}$, and $\underline{t}^{A} \in Std(\underline{A})$ is the tableau filled-in in order $(e_{\underline{g}}, ([\underline{A}] = \underline{i}^{\underline{s}}))$.

Theorem: Let e > n and Λ s.t. $\langle \Lambda, \alpha_{i,n} \rangle \le \Delta$ Vi. Then \mathbb{R}_{n}^{Λ} is greated cellular with graded cellular basis $le_{\underline{s}\underline{t}}: \underline{s}, \underline{t} \in Std(\lambda) \langle ,$ and $deg(\underline{e}_{\underline{s},\underline{s}}) = 0$. Proof: By the Vanishing Lemma, $\mathbb{R}_{n}^{\Lambda}(\Gamma_{e})$ is spanned by \mathcal{V}_{t} 's and $e(\underline{s})$'s. Also, since $and(\psi_{r}\psi_{r+1}\psi_{r}-\psi_{r+1}\psi_{r}\psi_{r+1})e(\underline{i}) is equal to \\ (2.2.4) \begin{cases} (\psi_{r}+y_{r+2}-2y_{r+1})e(\underline{i}), & \text{if } i_{r+2}=i_{r}+i_{r+1}, \\ e(\underline{i}), & \text{if } i_{r+2}=i_{r}+i_{r+1}, \\ f_{r+1}=i_{r}+i_{r+1}, & f_{r+1}=0, \end{cases}$ the \mathcal{V}_{e} 's satisfy the basic relations.

Furthermore, the relation $\psi_r e(\mathbf{i}) = e(s_r \cdot \mathbf{i})\psi_r$, allows us to write every product as $\Psi_u e(\mathbf{i}) = \Psi_u e(\mathbf{i}^{\lambda})\Psi_{d(\mathbf{i})}$ for $u \in S_n$.

Next, note that the elements of the form $e_{5,t} = \Psi_{\delta'(5)}(e(t^{(1)}))\Psi_{\delta(5)}$ already span, since $\Psi_{u} e(\underline{i}^{\lambda}) \Psi_{u} = \sum_{j \in \mathbb{I}^{n}} e(\underline{j}) \Psi_{u} e(\underline{i}^{\lambda}) \Psi_{u} = \sum_{j \in \mathbb{I}^{n}} \delta_{u \underline{j}, \underline{i}^{\lambda}} e(\underline{i}^{\lambda}) \Psi_{u}$ $\int_{t}^{t} u = d^{-1}(\underline{t}^{\lambda})$ In particular, $rk_{gF} R_{rr}^{\Lambda} \leq \sum_{\lambda \in P_{r}^{\Lambda}} |\operatorname{Std}(\lambda)|^{2} = l^{n} n!$ combinatorial fact. On the other hand, let $K = \overline{Frac}(\overline{z})$, and write $R_n^{(K)} = R_n^{(K)} = K$. Let $J(R_n^{(K)})$ be the Jacobson radical. By the Proposition, we constructed Specht modules St. These are pairwise nonisomorphic ungraded modules (look at the action of $e(\underline{i}^{\lambda})$ and so by Fitting $S^{\lambda} \cong S^{\mu}(d) \Longrightarrow \lambda = \mu$, d=0. By Wedderburn, $\ell^n n! \neq \dim \mathbb{R}_n^{(\kappa)}$ $J(\mathbb{R}_n^{(\kappa)}) \neq \underbrace{\leq}_{A \in P_n} (\dim S^n)^2 = \underbrace{\geq}_{A \in P_n} |\mathsf{std}(A)|^2 = \ell^n n!$ Therefore we have equalities, hence semisimplicity and the $e_{\underline{s},\underline{k}}$ form a basis over $\underline{\mathcal{F}}$! Furthermore, es, t ey, w = Styles, w so R'A is a sum of matrix rings of sizes (Std(A)). Cellularity follows. Regarding the grading, we need to show deg $(e_{s,t})=0$. This is easy: a typical element $4_r e(\underline{i})$, $\underline{i} \in I_n$ has $i_r + i_{r+1}$ (combinatorial lemma), so deg $(\forall_r e(L)) = -C_{i_r, i_{r+1}} = O_{i_r}$ To conclude, using the machinery of last time one shows:

1.6.7. **Theorem** (Hu-Mathas [57]). Suppose that $\mathcal{Z} = K$ is a field and that \mathscr{H}_n is content separated and that $\{f_{st} \mid (s,t) \in \operatorname{Std}^2(\mathcal{P}_n^A)\}$ is a seminormal basis of \mathscr{H}_n . Then $\{f_{st}\}$ is a cellular basis of \mathscr{H}_n and there exists a unique seminormal coefficient system α such that

$$f_{\mathsf{st}}T_r = \alpha_r(\mathsf{t})f_{\mathsf{sv}} + \frac{1 + (v - v^{-1})c_{r+1}^{\mathcal{Z}}(\mathsf{t})}{c_{r+1}^{\mathcal{Z}}(\mathsf{t}) - c_r^{\mathcal{Z}}(\mathsf{t})}f_{\mathsf{st}}$$

where $\mathbf{v} = \mathbf{t}(r, r+1)$. Moreover, if $\mathbf{s} \in \operatorname{Std}(\boldsymbol{\lambda})$ then $F_{\mathbf{s}} = \frac{1}{\gamma_s} f_{\mathbf{ss}}$ is a primitive idempotent and $\underline{S}^{\boldsymbol{\lambda}} \cong F_{\mathbf{s}} \mathscr{H}_n$ is irreducible for all $\boldsymbol{\lambda} \in \mathcal{P}_n^{\Lambda}$.

Corollary: The map
$$\Theta : \mathcal{R}_{n}(\Gamma_{e}) \longrightarrow \mathcal{H}_{n}^{\wedge}$$
 defined by
 $e(\underline{i}^{\underline{s}}) \mapsto F_{\underline{s}}$
 $\mathcal{V}_{r} e(\underline{i}^{\underline{s}}) \mapsto \frac{\Lambda}{\mathcal{O}_{r}(\underline{s})} (T_{r} - \frac{C_{r+\underline{s}}^{\underline{\pi}}(\underline{s}) - C_{r}^{\underline{\pi}}(\underline{s})}{\Lambda + (v - v^{\underline{s}}) C_{r+\underline{s}}^{\underline{\pi}}(\underline{s})}) F_{\underline{s}}$

is an isomorphism.

Proof: direct check.