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Introduction

How it started :

KLR Algebras Rn(f)
↳
Category, Uiofg) f- UIC.ie)

How it's going :

Integral Cyclotomic Hecke algebra gyp
→
dominant weight

↳ Cellular basis G.± , sit c- Std (A)

↳ Specht's § , simples D
"

,
Brauer - Humphreys reciprocity .

↳ Semisimplicity criterion

what's ahead :

RI (f) = cyclotomic quotient of KLR
↳ RICK) E Hi "Graded Isomorphism Theorem

"

↳ R^n( f.e) categoñfies the simple Uqlste) - module LG) " Graded categoryration Theorem
"

↳ Projective indecomposable categonfy the canonical basis of LU) .

Today : 1
. Upgrade cellularity to a graded versions

2. Introduce cydotomic KLR algebras and their first properties .

3. Describe RI folly in the semisimple case
, via a graded cellular basis

.

↳ Corollary : Graded categoryration Theorem in this case



Previous Notions :

Example : integral cyclotomic Hecke

A : cellular algebra A = HI=L.tv", Ti , Li,Qi=v".li/ndsHe&ketSnJtMcycthtomic
A = A

K, (mode)
+

- - -
t Ake (mode)

(P, B ) weight poset .

Ptl-multipartitions of n ☒ ( T# , ☒ )n

✗ c- P ⇒ TCH finite set THY -81daL) standard A-tableaux ( TEH , # )
C- { Cse :S, TETCH

,
XEP ) cellular basis C- 1mn : s.tc-stdxl.HN 4

"

UH ✗ youngest

* anti involution I.
*
=Ti
,
E. = Li

,
v*=v"

,
Csf = Cst

(
✗
c- Hoda cell module

,
basis TH) § Specht module , basis time : 1-c- 81daL) 1

2- =F

< , > on C
"

,
DE C'Yradct ⇐ All the simples If =/ 0 ) D☒=8%dC§ )

P" → D" projectile cover

Brauer - Humphreys recip .

: [ P" :C" ] = [Ct :D"]



1. Graded Everything

Again tale 2- be a commutative domain
. Every module and algebra will be free over 2- with dimz < • .

let A- = ④Ad be a graded algebra .

let A- = ungraded A.
DEX

A graded A-module M is an A- -module with a decomposition M= ④ Md st
. Ad ' Md c- Mdw

.

d c-21

Sadly we set MCs>d = Md-s .

The graded Hom is Hom:( M, N) := ④ Homa ( M ,
Nts))

.

SEZ

graded dim is dim
g-
( M) = E

sez,
9-
s dimzttoma ( M ,

Ncs>)

Given a simple graded A-module D, the graded decomposition number is [M :D ]q= E
sez

9-
s [M :D(s)]

let Me be an ungraded A- - module . A graded lift is an A -module Mst
. 11=-11

.

Proposition : any two graded lifts of a f.g. indecomposable module over A are unique up to shift .

Prof: Recall the Fitting lemma : endomorphisms of finite length indecomposable are either isomorphisms or nilpotent .

Now let M
,
N be A-modules with -17

,
N-E.lt. Now Honi (M ,N)= Hom (II. D) = End (A)

.

In particular,

the identity map on U can be written as a finite sum ida= E Yd with Cfd of degree d. .

DEZ
~

Assume every fd is nilpotent . Then ( idu)
"! 0

,
absurd

.
So at least one Yd is an isomorphism.

(In fact, only one)
☐

Definition ( Graded cell datum) : A graded cell datum (P, T, c) is one that comes equipped with a

map (of sets) TCH → Z ft c- P
,
and such that Cst is homogeneous of degree degcs) + degct) .

Remark : most things carry over : C
"
is the graded cell module

,
its bilinear form has degree 0 , rad① is a

graded submodule, D
"
= C'Yradcx is graded , etc. As a corollary of the Proposition, we get that

h Dhs> :D" #09 is a complete set of graded simples .

Relevant for us is the following : a graded cell filtration of M is M= Mo > . . -

>Mm-0 with Mi/ = < si>
.

Mita

The cell module multiplicities and shifts are independent of the filtration and so we define [ M :C"]; E q
"

i : Miki , ,' C'Ksi >

We also have a notion of graded Brauer - Humphreys reciprocity : [P" :C"]g= [① :D"]g .



2. Cydotomic KLR algebras aka cyclotomic quiver Hecke algebras .

In the first future we defined KLR algebras for a loop-less unoriented quiver with no multiple edges .

( e.g. cyclic quiver Pe = eh
r

'

:)Recall that we had Rolf )= ⑤ v n

e,j
>c-Seger)

JRV ¥
,
>

z

We also had bases for ¥21M,→= 1 diagrams from E -10 Jl given by diagrams with dots at the bottom .

Define Rn (f) = ⑦ Rolf )
lrkn

Definition .

let A = hint . . .

+ Arin
.

The cyclotomic quiver Hecke algebra for cydotomic KLR algebra) is

Riv ):= ④ RileylH=n ✗An> f / --- 1
, cnn.to/---/ , . - -

,

Chan> 41--1 )
1 2 n

Example:S : • let h=1, A = a. A- +
. . .
+ ae Ae

= 2- [toy ④ . - - ⑦ 2- [BYThen Ritt RI.tn/qay+--- ④ R^( ftp.ae) ( ta) ( toad
✗e

di de

coincidentally , 71? = 2- [ ↳%, - v4 . . . /↳ uyae
E 2- [¥; ④ - - - ⑦ £14K?

• Let n=2, A = As +Az , ✓= a, + ✗z ,
f = Ñ

, I

Recall that R :=R (f)
,

was
✗th

*Bam ④
jiRam ⑤

*Bad ,

④
a,
#hall

z.la/.kb4z.ha.X..s4z.ha.X..s4z.hbkf4

subject to : ✗ =/ /
i i i ; ,

¥ = ¥
,
¥
,

=

E Mz (2- [× , y] )

Now 12^5%1=14212-1×4%1.1
,
f. y >

= 1%12-1
.

Coincidentally, this has dimz =4< • .



3. RI is finite dimensional

Proposition : the title of the section holds
.

Proof: Since we have bases with dots on the bottom
,
it suffices to show that every

"dot diagram
" / . - - & . - . / is nilpotent .

✗i
, die ✗ in

We induct on t, -1=1 being clear from the definition of cydotomic quotient.

For the inductive step , we have 3 cases :

• di, 1- ✗ i++,
: / - - - / Hi - - | = / - - -

- -
- | =/ - - -§ - -

- | .

But / . - - µ / " ' 1=0 for N>>0 , we win .

Observe that it is enough to prove these for the two relevant strands.

• die - die,
: / 42N = ( / /• + § / ) / four-i - f /• an- i

= $•zn - § §2N -1

= 2N - § §2N -1

= - § &2N -1

= . . - = I futon

• ✗ it = ✗i.+1 : exercise .

☐

Remark : The above proof uses the conventions in IKL], but for this section we are following [M3 , which gives

the following (Rougier) presentation :

eat / / - - - / / deg 0
in iz in -1 in

Hr = / / . . ✗ . .
- / / deg Yreli) = - cir.ir+1

→
r r+1

yr = / . - - to . - . I deg 2
r



In fact , one can generalize the definition to any quiver by means of a matrix with entries in 2- [a.v3

denoted Q = (Qij) with Qii -0
, Qij ✗0 , Qijluiv) = Qjilvia), deg Qij = r , where i-j

Then the relations are the same except

=

\

One recovers the first ) Khovanov - Lauda definition setting Qij = utii + v-9
"

We stick to P = Pe for the rest of the talk .



4. Representation theory of R^n , semisimple case

Recall that HI was semisimple iff writing A = lanai
, as, . . - , an) in the basis of fundamental

weights, no consecutive n - string contains more than a 1 :

"

far apart
"

.

Mattias defines ✗in = dit
. . -
+ aim -1 and requires 41 , dim 7<-1 ti .

We make the same assumption here . A posteriori , this implies RT is ss
,
but we do not assume so.

Recall that if 2- =F is a field, I lrreps of Hi Css) /← Is
"

: A 1- multipartition of n t

so we hope that the following holds
. .

Proposition : let 2-=F
,
e>n and 1/1

, aim > £1 Hi
.

Then for each ☒ th there is a unique

simple graded R! - module 5
"

with homogeneous basis { 4± : ± c- Stds) 4 .

Furthermore deg 4€ = 0 V-E and the action is given by :

if Sr - I not standard
t

Ye - eli) = 8¢
,
Y± , 4-1 yr, = 0 , YI ' Yr = 4s

.
. -1

= 0

Here, given f- C- Std (A)
, I

±
= ( c.(E) (model, . .

. . Cnt) (model)
" residue sequence of ±

"

iIn turn , crit) is given by : I = ( 1¥ , ☒ , . . - ,
,

. . - ,

T# )
I
e)

⇒ crtt)= ke th - v

We denote the set of all such sequences by II.

Combinatorial Lemma : Assume again e>n and (11
, dim > £1 Hi

.

Then :

a) For any t.SE Std (PI ) , I =s_ iff E-=
.

b) If I C- I"n , then ir =/ iris .

c) If I C- If has ire = ir -1-1 for some r, then Sr . I ¢ II.

d) If I C- Inn , then ( i , i -11, it is not a (consecutive) subsequence of I.



-
all different !

Proof : a) Induction on n . For n=1, PI = { (0, . . .,¢, ☐ , ¢, . . .io/):j--1,...,es ⇒ IF =/ Kj : 1×1=1, . - -ill

⇐!
Assume I c- StdGN is the unique tableau in Std (PI) with a given E- c- II.

and take U hinnies c- Std (Pinta)
.
Then cm+±lI) = ke -1h -v = ima mode ⇒ F!

"

addable
"

node
Ke 's are

far apartwith a given content .
.

☒ ☐

b) If ir=ir+, , then r and rt1 lie on the same partition inside ☒
.
Now we have

"
if ☒ , impossible .

\

\

c) Similarly , if two consecutive contents differ by 1 , they must lie in the same partition inside ☒
.

By definition of the content, r and rt1 are in the same column /row
, making Sr . -1 not standard.

d) Similar.

Proof of the Proposition :

Recall we set

Y± . eli) = 8¢
,
Y± , 4-1 yr, = 0 , YI ' Yr = YEW,r+1) .

(Discuss :)

✓ I⇐ if ✓ ±⇐> if

✓ o ✓ def of Yr ✓ o

✓ def
✓ 0

✓ O t

irt-irtnlrtls-ou-is.io"
✓ (never )
✓ (def)

Year) by d)
✓ braid for Sr , Srta

Now b) implies cir.int =0 so degel ) -Yr = 0 ⇒ Set deg 14=4--0 for all -1 .

This shows that § is a graded R^n( Pe) - module .



Proof of simplicity : let ME S☒ be nonzero and take a nonzero m= § µ±y± .

Choose a nonzero summand µ±y± .

Then meth = µ±4± ⇒ Y± c- M
.
Now for any other { c- Std A) Fw C-Sn s-t

.
w - I = s

.

So 4s = 4±Yw EM .

Hence 14=5
"

.
☐

Next
,
we show that Rin is graded cellular .

We need a lemma :

Vanishing lemma : The following vanish :

a) The
"

idempotent generators
"

eli) whenever I ¢ Inn .

b) The
"dot

"

generators y.

Proof of a) is omitted
,
it comes down to a detailed study of the set If a la Okoonkov - Vershik

.

b) Since E
*In
eli)=1

, by a) it suffices to show that yr kills eli) for II.f- Ira .

/ Induct on r)
.

• If in = ir -1-1 : yreli) = / - - - / § - - - / ¥µ¥ . .
. / § . . . / - / . .

. § / . . . / = ± / . .
. ¢ . . . / 1 this bit is e.( Sr ,

"± ' ir ir-11 in ir± , er
ir-11 or which is 0 by a) and

the previous lemma -

• If in + ir : yrel = / - - - / |• - - - / =/ . .
.# . . . / =induction 0 .

ir-1-1 ir ir-1-1 ir

the fact that these are
the only two cases also follows from the proof of a) .

)

We are ready to prove the cellularity theorem .

Define the elements es,± = 4µs, -let ) 4,1¢, , where = IÉ
,
and É c- stdt) is the tableau

filled - in in order leg . FLEET 18¥ ) ) .
s -

Theorem : Let e>n and A s.t.CA, ✗ in > et ti . Then RI is graded cellular with graded cellular basis

less : E.I c- Std (A) 4 , and degles,±)=O.

Proof : By the Vanishing Lemma
, Riffe) is spanned by Yt 's and eli's

.

a. d)
tAlso

, since =o
,
the Ye's satisfy the braid relations .

Furthermore, the relation allows us to write every product as Yael = Yael Hae, for utsn.



Next
,

note that the elements of the form es ,-1=4,1-4, let 1) Yokel already span , since

Yue Yw = ¥, eljl Yue lit)Yw
= I 8

Ic- IL
a
,

e ( it)yw
I

1- if u = d-
' (-1×1)

In particular , rkz Ri E E 1stday 12 = lnn !
☒ c-Pi t

combinatorial fact .

On the other hand, let K= Fractal
,
and write R? 1K) = Ri ¥ K .

Let JCRIIK)) be the Jacobson radical
.

By the Proposition, we constructed Specht modules §.

These are pairwise nonisomorphic ungraded modules ( look at the action

of el 1) and so by Fitting § ± (d) ⇒ ☒ =p , d--0 . By Wedderburn
,

l"n! 7 dim Pinky
JCR; (K))

> E Him )
"

= Elstdx)T= en ni
,

☒ c-Pn ☒c-Pn

Therefore we have equalities, hence semisimplicity and the es, -1 form a basis over £ !

Furthermore , es,± - eaie-E.aes.ie so Ria is a sum of matrix rings of sizes / Std/A) 1
. Cellularity follows.

Regarding the grading , we need to show deg les ,-11=0 .

This is easy : a typical element 4rem, ±eIh

has ir 1- ir+1 ( Combinatorial lemma)
,
so deg threw) = - Cir , in-1 = 0 ☐

To conclude
, using the machinery of last time one shows :

Corollary : The map ( : Rin (B) → Hi defined by

el ) ↳ Fs

Hr eli ↳ 1- (Tr - c¥É%) ) F,
✗r(5-7 A- + (v -v-1) Crafts)

is an isomorphism .

Proof : direct check .


