Cellular Algeloras
Source: A. Mathas. Clwahoi- Necke algebras and Aechur Algebras of the Symmetric Aloup. Vol.15. University Lecture Series. American Mathematical Society, Providence, RI, 1999.

1. Cellular Bases
R-commutative domain with 1
A-associative unital R-algebra, free as an R-module
We want a basis of A with particular properties:
Let (λ, \geqslant) be a finite poet s.th. for each $\lambda \in \lambda, \tau(\lambda)$ is a finite indexing set and $C=\left\{c_{s t}^{\lambda} \mid \lambda \in \lambda, s, t \in T(\lambda)\right\}$ is a basis of A.

For $\lambda \in \lambda$, let $\tilde{A}^{\lambda}=\operatorname{span}\left\{c_{u v}^{\mu} \mid \mu \in \Lambda, \mu>\lambda, u, v \in \mathcal{T}(\mu)\right\} \underset{R \text {-submodule }}{\subset} A$
Def'n: $(C, 1)$ is a cellular basis of A if
(1) *: $\left\{\begin{array}{l}A \longrightarrow A \\ C_{s t}^{\lambda} \longmapsto c_{t s}^{\lambda}\end{array}\right.$ is an algebra anti-isomorphism of A
(2) For $\lambda \in \Lambda, t \in \tau(\lambda)$, a $\in A$ there exist $r_{v}=r_{v t}^{a}$ such that for all $s \in C(A)$

$$
c_{s t}^{\lambda} a \equiv \sum_{v \in \tau(\lambda)} r_{v} c_{s v}^{\lambda} \bmod \stackrel{A}{A}^{\lambda}
$$

kif A has such a basis it is a cellular algebra.
Ex.1: $A=R[x], \quad \Lambda=\mathbb{N}$ (with the usual ordering)
For $n \in \mathbb{N}$ take $\tau(n)=\{n\}, \quad C_{s t}^{\lambda}=c_{n n}^{n}=x^{n}, C=\left\{x^{n}: n \in \mathbb{N}\right\}$
$A^{n}=x^{n+1} R[x]$ (al lterms of degree higher than n)
$\rightarrow *=i d$ is an anti-isomorphism
\rightarrow for $\lambda=n, t=n, a=\sum_{i=0}^{n} a_{i} x^{i}$

$$
\begin{aligned}
c_{s t}^{\lambda} a & =x^{n} \sum_{i=0}^{n} a_{i} x^{i} \\
& =a_{0} x^{n}+\sum_{i=1}^{k} a_{i} x^{k+i} \\
& \equiv a_{0} x^{n} \bmod \bar{A}^{n}
\end{aligned}
$$

so for any $s \in \tau(\lambda)$ (the only option is $s=n$)
we have $C_{s t}^{\lambda} a \equiv{\underset{r}{r_{v}}}_{a_{0}} x^{n} \bmod \tilde{A}^{n}$
Ex. 2: $\quad A=\operatorname{Mat}_{n \times n}(R), \lambda=\{n\}, \tau(n)=\{1,2, \ldots, n\}, C=\left\{E_{i j} \mid 1 \leqslant i, j \leqslant n\right\}$ Then (C, λ) is a cellular basis of A :
\rightarrow consider $n=2, t=1 \in \tau(2),\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in A$

$$
\begin{aligned}
& (s=1) \quad E_{11}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]=a E_{11}+b E_{12} r_{v 1}^{\mu} c_{s v}^{2} \\
& (s=2)
\end{aligned} \quad E_{21}\left[\begin{array}{ll}
a & b \\
a & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right]=a E_{21}+b E_{22} . l l
$$

so $\quad r_{11}^{M}=a, \quad r_{21}^{M}=b$

Ex. 3: Let $A=\mathbb{H}\left(S_{3}\right) \cong \mathbb{N}\left\langle b_{1}, b_{2}\right\rangle \mid\left(b_{i}^{2}=\left(q+q^{-1}\right) b_{i}\right)$
$\left.b_{1} b_{2} b_{1}-b_{1}=b_{2} b_{1} b_{2}-b_{2}\right)$
Let $\Lambda=\left\{(3)>(2,1)>\left(1^{3}\right)\right\} \quad$ (partitions of 3 with lexicographic order)
Given $\lambda \in \lambda$, take $\tau(\lambda)$ to be the set of standard Young tableaux of shape λ, ie

Let $c_{s s}^{(3)}=b_{1} b_{2} b_{1}-b_{1}=b_{2} b_{1} b_{2}-b_{2}$

$$
\begin{array}{ll}
c_{t 2}^{(2,1)}=b_{1} b_{2} & c_{u 2}^{(2,11)}=b_{2} \\
c_{t u}^{(2,1)}=b_{1} & c_{w v}^{(1)}=1
\end{array}
$$

\rightarrow Claim: this is a cellular basis for $A=\psi\left(S_{3}\right)$.
The map * is induced by $b_{1} \longleftrightarrow b_{2}$.
The multiplication condition:
It suffices to check for $a=b_{1}, b_{2} \in A$

$$
\lambda=(3): s \in \tau((3)), a=b_{1} \in A
$$

We need $c_{s s}^{(3)} b_{1} \equiv r_{s s}^{b_{1}} c_{s s}^{(3)}$

$$
\begin{aligned}
c_{s s}^{(3)} b_{1} & =\left(b_{1} b_{2} b_{1}-b_{1}\right) b_{1} \\
& =\left(b_{1} b_{2}-1\right) b_{1}^{2} \\
& =\left(b_{1} b_{2}-1\right)\left(\left(q+q^{-1}\right) b_{1}\right) \\
& =\left(q+q^{-1}\right) c_{s s}^{(3)}
\end{aligned}
$$

() so take $\quad r_{s s^{\prime}}=q+q^{-1}$

$$
\begin{array}{r}
\lambda=(2,1): \quad t \in T((2,1)), a=b_{1}, \AA^{(2,1)}=\left\langle c_{s s}^{(3)}\right\rangle \\
c_{t t}^{(2,1)} b_{1} \equiv r_{t} c_{t t}^{c_{t,}^{(2,)}}+r_{u} c_{t u}^{(2,1)} \bmod \check{A}^{(2,1)} \\
L b_{1} b_{2} b_{1} \equiv r_{t} b_{1} b_{2}+r_{u} b_{1} \bmod \AA^{(2,1)} \\
c_{u t}^{(2,1)} b_{1} \equiv r_{t} c_{u t}^{(2,1)}+r_{u} c_{u u}^{(2,1)} \bmod \AA^{(2,1)} \\
\\
4 b_{2} b_{1} \equiv r_{t} b_{2}+r_{u} b_{2} b_{1} \bmod A^{(2,1)}
\end{array}
$$

This is satisfied by $r_{t}=0, r_{u}=1$
For $a=b_{2}: b_{1} b_{2} b_{2} \equiv r_{4} b_{1} b_{2}+r_{4} b_{1} \bmod A^{(2,1)}$

$$
\begin{aligned}
& b_{1} b_{2} b_{2}=r_{+} b_{1} b_{2}+r_{4} b_{1} \bmod A \\
& \leftrightarrow b_{1}\left(q+q^{-1}\right) b_{2} \equiv r_{t} b_{1} b_{2}+r_{u} b_{1} \bmod A^{(21)}
\end{aligned}
$$

$$
\begin{gathered}
b_{2}^{2} \equiv r_{t} b_{2}+r_{u} b_{2} b_{1} \bmod \hat{A}^{(2,1)} \\
L\left(q+q^{-1}\right) b_{2} \equiv r_{t} b_{2}+r_{4} b_{2} b_{1} \bmod A^{(2,1)}
\end{gathered}
$$

This is satisfied by $r_{t}=q+q^{-1}, r_{u}=0$
The computations for $u \in \tau(\lambda)$ are similar.

$$
\begin{gathered}
\lambda=\left(1^{3}\right): v \in \tau\left(\left(1^{3}\right)\right), \quad \AA^{\left({ }^{(3)}\right)}=\left\langle b_{1}, b_{2}\right\rangle \\
c_{v v}^{\left(1^{2}\right)} b_{1} \equiv r_{v} c_{v v}^{(13)} \bmod \tilde{A}^{\left.(1)^{1}\right)} \\
b_{1} \equiv r_{v} \bmod \AA^{(13)} \\
\text { take } r_{v}=0
\end{gathered}
$$

Similarly: $\begin{gathered}b_{2} \equiv r_{v} \bmod \AA^{(13)} \\ \text { \& take } r_{v}=0\end{gathered}$
2. Properties

Fix $(C, 1)$ a cellular basis of an algebra A. For $\lambda \in \lambda$ let A^{λ} be the R-module with basis $\left\{c_{u} \mu \mid \mu \in \Lambda_{1}, \mu \geqslant \lambda, u, v \in \tau(\mu)\right\}$ Note that $A^{\lambda} \subseteq A^{\lambda}$, and $A^{\lambda} / A^{\lambda}$ has basis $\left\{c_{s t}^{\lambda}+\dot{A}^{\lambda} \mid s, t \in \tau(\lambda)\right\}$

We note some preliminary consequences of the definition of cellular bases: (Numbering corresponds to the book)
Lemma 2.3: Let $\lambda \in 人$
i) Let $s \in \tau(\lambda), a \in A$. For all $t \in \tau(\lambda)$

$$
a^{*} c_{s t}^{\lambda} \equiv \sum_{u \in \tau(\lambda)} r_{u} c_{u t}^{\lambda} \bmod A^{\lambda}
$$

the same $r_{n} \in R$ as in (1)
4. this follows from applying * to part (2)
of the definition
ii) The R-modules A^{λ} and ${A^{\lambda}}^{\lambda}$ are ideals of A
$\rightarrow A^{\lambda}$ being an ideal follows from (2), and $\lambda^{\mu}=\sum_{\mu>\lambda} A^{\mu 0}$ gives the result for λ^{2}.
iii) Let $s, t \in \tau(\lambda)$. There exists $r_{s t} \in R$ such that for any $u, v \in T(\lambda), c_{u_{s}}^{\lambda} c_{t v}^{\lambda} \equiv r_{s t} C_{i v}^{\lambda} \bmod A^{\lambda}$ L_{0} use part (i) of this Lemma and part (2) of the definition to write $c_{u s} C_{t v}^{\lambda}$ as a linear combination of the cellular basis elements.

The cellular basis gives us a filtration of A (via the A^{λ}), and part (iii) of the Lemma tells us that there is a bilinear form on each quotient $A^{\lambda} / A^{\lambda}$ of the filtration.

Given $\lambda \in \hat{A}, s \in T(\lambda)$ we define $\left.C_{3}^{\lambda} C A^{\lambda}\right|^{\lambda} A^{\lambda}$ as the R-submodule with basis $\left\{c_{s t}^{\lambda}+\mathcal{A}^{\lambda} \mid t \in C(\lambda)\right\}$.
This is a right A-module (by (2)) and the A-action does not depend on s. This gives $C_{S}^{\lambda} \cong C_{t}^{\lambda}$ for $s, t \in T(\lambda)$, so we define the right cell module C^{λ} as the right A-module with basis $\left\{c_{t}^{\lambda} \mid t \in \tau(\lambda)\right\}$ where for $a \in A, \quad c_{t}^{\lambda} a=\sum_{v \in T(\lambda)} r_{v} c_{v}^{\lambda}$ (the r_{v} as in (2))
$C^{\lambda} \cong C_{s}^{\lambda}$ for any $s \in T(\lambda)$ via $c_{t}^{\lambda} \mapsto c_{s t}^{\lambda}+\hat{A}^{\lambda}$ for $t \in T(\lambda)$.
We define the left cell module $C^{* \pi}$ as the free R-module with basis $\left\{c_{t}^{\lambda} \mid t \in \tau(\lambda)\right\}$ and A-action $a^{*} c_{t}^{\lambda}=\sum_{v \in \tau(\lambda)} r_{v} c_{v}$ ($a \in A, r_{v}$ as in (2)).

This is a left A-module and $C^{* \lambda} \cong \operatorname{Hom}_{R}\left(C^{\lambda}, R\right)$.
As (A, A)-bimodules, via $c_{s t}^{\lambda}+A^{\lambda} \mapsto c_{s}^{\lambda} \otimes c_{t}^{\lambda}$, for $s, t \in \tau(\lambda)$,

$$
A^{\lambda} \mid A^{\lambda} \cong C^{* \lambda} \otimes C^{\lambda} \cong \underset{s \in C(\lambda)}{\bigoplus} C_{s}^{\lambda}
$$

so $A^{\lambda} / A^{\lambda} \cong C^{\lambda \oplus|\tau(\lambda)|}$ as a right A-module
Lemma 2.7: Let $a \in C^{\lambda}, y \in A^{\mu}$. Then $a y=0$ unless $\lambda \geqslant \mu$.
Pf: Fix $s \in \tau(\lambda)$ and identify $C^{\lambda} \cong C_{s}^{\lambda}$. By definition, ay=0 $\forall a \in C_{s}^{\lambda}$ iff $C_{s_{t}}^{\lambda} y \in A^{\lambda}$ for all $t \in \tau(\lambda)$.
$A^{\lambda}, A^{\mu} C^{\lambda}$ are ideals, so $c_{s t}^{\lambda} y \in A^{\lambda} \cap A^{\mu}$, but if $\lambda \neq \mu, A^{\lambda} \cap A^{\mu} \subseteq A^{\lambda}$.

Lemma 2.3 (iii) tells us that there is a unique bilinear map $\langle\rangle:, C^{\lambda} \times C^{\lambda} \longrightarrow R$ such that for $s, t \in \tau \mathcal{\tau}(\lambda)\left\langle c_{6}^{\lambda}, C_{t}^{\lambda}\right\rangle$ is given by $\left\langle c_{s}^{\lambda}, c_{t}^{\lambda}\right\rangle c_{u v}^{\lambda} \equiv c_{u s}^{\lambda} c_{t v}^{\lambda} \bmod \hat{A}^{\lambda}$. (3)
This map is both symmetric and associative:
Prop. 2.9: Let $\lambda \in \lambda, x, y \in C^{\lambda}$.
(i) $\langle x, y\rangle=\langle y, x\rangle$
(ii) $\langle x a, y\rangle=\left\langle x, y a^{\overrightarrow{2}}\right\rangle$ for all $a \in A$
(iii) $x c_{u v}^{\lambda}=\left\langle x, c_{u}^{\lambda}\right\rangle c_{v}^{\lambda}$ for all $u, v \in \tau(\lambda)$

Defin: Let $\operatorname{rad} C^{\lambda}=\left\{x \in C^{\lambda} \mid\langle x, y\rangle=0\right.$ for all $\left.y \in C^{\lambda}\right\}$
This is an A-submodule of C^{λ}, so we define $D^{\lambda}:=C^{\lambda} / \mathrm{rad} C^{\lambda}$.
Recall: the Jacobson radical of a module is the intersection of its maximal ideals.

Prop. 2.11: Let R be a field and $\mu \in 人$ be such that $D^{\mu} \neq 0$
(i) The right A-module D^{μ} is absolutely irreducible.
(ii) The Jacobson radical of C^{μ} is rall C ?

Pf: Let $x^{x} \neq 0$ be in $C^{\mu} \backslash \operatorname{rad} c^{\mu}$, so $\langle x, y\rangle \neq 0$ for some $y \in C^{\mu}$. We can assume $\langle x, y\rangle=1$. Since $y \in C^{\mu}$ we can write $y=\sum_{s \in \tau(\mu)} r_{s} c_{s}^{\mu}$ for some $r_{s} \in R$.
For $t \in \mathbb{C}(\mu)$ let $y_{t}:=\sum_{s \in \tau(\mu)} r_{s} c_{s t}^{\mu} \in A$.

$$
\begin{aligned}
x y_{t} & =x \sum_{s \in \tau(\mu)} r_{s} c_{s t}^{\mu} \\
& =\sum_{s \in \tau(\mu)}^{r_{s}} x c_{s t}^{\mu} \\
(\text { (prop } 2.9 \text { (iii)) } & =\sum_{s \in \tau} r_{s}\left\langle x, c_{s}^{\mu}\right\rangle c_{t}^{\mu} \\
& =\left\langle x, \sum_{s \in(\text { bilinearity }}^{\mu} r_{s} c_{s}^{\mu}\right\rangle c_{t}^{\mu} \\
& =\langle x, y\rangle c_{t}^{\mu} \\
& =c_{t}^{\mu}
\end{aligned}
$$

So, x generates C^{μ} as a right A-module, for any $x^{\prime} C^{\mu}$ trad C^{μ}, so D^{μ} is is irreducible and rad l $C^{\mu}{ }^{\mu}$ is the unique maximal proper submodula of C^{μ}, so it is equal to the Jacoloson radical of $C \mu$.
The same argument gives $U s$ that D^{μ} is irreducible for any extension field of R, and so is absolutely irreducible.
Prop. 2.12: Let R be a field and let $\lambda, \mu \in \lambda, D^{\mu} \neq 0$. Let $M \subset C^{\lambda}$ be a proper subomodule and assume $\theta: C^{\mu} \rightarrow C^{\lambda} / M$ is an A-module homomorphism.
(i) If $\theta \neq 0$ then $\lambda \geqslant \mu$
(ii) If $\mu=\lambda$ then $\exists r_{\theta} \in R$ such that

$$
\theta(z)=M+r^{\prime} z, \forall z_{R} \in C^{\mu} \text {, so }
$$

Pf: Choose $x_{1}, y \in C^{\mu}$ such that $\langle x, y\rangle=1$, and for $t \in \tau(\mu)$ let $y_{t}=\sum_{s \in(t,())} r_{s} C_{s t}^{\mu} y^{\prime}$. As seen, $C_{t}^{\mu}=x y_{t}$.
$\theta(x)=M+a_{\theta}$ for some $a_{\theta} \in C^{\lambda}$, so
(A-module homomorphism)
$\theta\left(c_{t}^{\mu}\right)=\theta\left(x y_{t}\right)=\theta(x) y_{t}=M+$ aoyt for any $t \in \tau(\lambda)$.
Since $a y_{t}=0$ unless $\lambda \geqslant \mu$ (Lemma 2.7), if $\theta \neq 0$ we must have $\lambda \geqslant \mu$ (which proves (i)).
\rightarrow If $\lambda=\mu$ then $a_{\theta} \in C^{\mu}$, so

$$
\begin{aligned}
\theta\left(c_{t}^{\mu}\right) & =M+a_{\theta} y_{t} \\
& =M+a_{\theta} \sum_{s \in \tau(1 / \mu} r_{s t} \\
& =M+\sum_{s \in \tau(\mu)} r_{s} a_{\theta} c_{s t}^{\mu} \\
(2.9(i i i)) & =M+\sum_{s \in \tau(\mu)}^{\mu} r_{s}\left\langle a_{\theta}, c_{s}^{\mu}\right\rangle c_{t}^{\mu} \\
\text { (bilinearity) } & =M+c_{t}^{\mu}\langle a \theta, y\rangle
\end{aligned}
$$

So that θ is the natural projection $C^{\mu} \rightarrow C^{\mu} / M$ composed with multiplication by $r_{\theta}=\langle a \theta, y\rangle$, proving (ii)
Cor 2.13: If R is a field and $\mu, \lambda \in \lambda$ are such that $D^{\mu} \neq 0$ and $D^{\mu} \cong D^{\lambda}$, then $\mu=\lambda$
(There exists a nonzero $\theta: C^{\mu} \rightarrow D^{\lambda}$ so $\lambda \geqslant \mu$, and by symmetry $\mu \geqslant \lambda$, so $\mu=\lambda$).
\rightarrow we will soon see that all irreducible A-modules are of this form.
3. Simple Modules in a Cellular Algebra

For this section we will assume $|\lambda| \angle \infty$ and so $\operatorname{dim} A<\infty$.

Cellular bases give us many filtration of A.
Def' n : $T \subset \lambda$ is a poses ideal if $\mu \in T, \lambda>\mu$ implies $\lambda \in T$.
For such a subset T let $A(T) \subset A$ be the R-submodule with basis $\left\{c_{u v}^{\mu} \mid \mu \in T, u, v \in \tau(\mu)\right\}$ Then $A(T)=\sum_{\mu \in T}^{\mu}$ is an ideal.
finite
Lemma 2.14: Let $\phi=T_{0} C T_{1} C \ldots C T_{k}=\lambda$ is a maximal chain of ideals in Λ. Then there is a total ordering μ_{1}, \ldots, μ_{k} of Λ such that $T_{i}=\left\{\mu_{1}, \ldots, \mu_{i}\right\}$ for all i, and $0=A\left(T_{0}\right) \longleftrightarrow A\left(T_{1}\right) \longleftrightarrow \ldots \hookrightarrow A\left(T_{k}\right)=A$ is a filtration of A with composition factors $A\left(T_{i}\right) / A\left(T_{i-1}\right) \cong C^{* \mu_{i}} \otimes C^{\mu_{i}}$.

Pf: Since the chain is maximal, $\left|T_{i} \backslash T_{i-1}\right|=1$ for $i=1, \ldots, k$. There is therefore a total ordering μ_{1}, \ldots, μ_{k} of the elements in Λ such that $j>i$ when $\mu_{i}>\mu_{j}$ and $T_{i}=\left\{\mu_{1}, \ldots, \mu_{i}\right\}, \quad 1 \leq i, j \leq k$.

Therefore ${ }_{A} \mu_{i} \subseteq A\left(T_{i-1}\right)$ and $\left\{c_{u v}^{\mu_{i}}+\left.A\left(T_{i-1}\right)\right|_{u_{1}} \in T\left(\mu_{i}\right)\right\}$ is a basis of the ideal $A\left(\Gamma_{i}\right) / A\left(T_{i-1}\right)$, so that the R-linear map $\left\{\begin{array}{c}A\left(T_{i}\right) / A\left(T_{i-1}\right) \\ C_{\mu_{i}}+A\left(T_{i-1}\right) \longmapsto C^{\mu \mu_{i}} \otimes C^{\mu_{i}}\end{array}\right.$ is an (A, A)-bimodule isomorphism for $i=1, \ldots, k$.

Recall that $C^{* \mu} \otimes_{R} C^{\mu} \cong\left(C^{\mu}\right)^{\oplus \mid} \mid(\mu) \lambda$ as a right A-module, so each irreducible ${ }^{R}$ composition factor of A is a composition factor of some cell module, which we will investigate.
Lemma 2.15: Suppose $\lambda \in \lambda$ is minimal, then $C^{\lambda}=D^{\lambda} \quad$ (recall $\left.D^{\lambda}:=C^{\lambda} / \mathrm{rad} C^{\lambda}\right)$
Pf: We need to show that $\mathrm{rad}^{\lambda}=0$.
Suppose $x \in \operatorname{rad} c^{\lambda}$, and write $x=\sum_{t} r_{t} c_{t}^{\lambda}$ for some $r_{t} \in R$. Fix se $\tau(\lambda)$ and let $\hat{x}=\sum_{t} r_{t} C_{s t}^{\lambda}$, so $\hat{x} \in A^{\lambda}$ and $\hat{x} \in \tilde{A}^{\lambda}$ iff $x=0$. Since $x \in \operatorname{rad} C^{\lambda},\langle x, y\rangle=0$ for all $y \in C^{\lambda}$, so for $u, v \in R(\lambda)$

$$
\begin{align*}
\hat{x} c_{u v}^{\lambda} & =\sum_{t \in \tau(\lambda)} r_{t} c_{s t}^{\lambda} c_{u v}^{\lambda} \\
& \equiv \sum_{t \in \tau(\lambda)} r_{t}\left\langle c_{t}^{\lambda}, c_{u}^{\lambda}\right\rangle c_{s v}^{\lambda} \tag{3}\\
& =\left\langle x, c_{u}^{\lambda}\right\rangle c_{s v}^{\lambda} \\
& =0 \bmod \tilde{A}^{\lambda}
\end{align*}
$$

So, $\hat{x} a \in \hat{A}^{\lambda}$ for all ae, and so $\hat{x} \cdot 1=\hat{x} \in \hat{A}^{\lambda}$, which gives us $x=0$ as desired.
Let $\Lambda_{0}=\left\{\mu \in 人 \mid D^{\mu} \neq 0\right\}$, ie μ such that \langle, \rangle is non-zero on $\mu\left(D^{\mu}=C^{\mu} / \operatorname{rad} C^{\mu}\right.$, so $D^{\mu} \neq 0$ if $\operatorname{rad} C^{\mu} \neq C^{\mu}$, ie there is some $x \in C^{\mu}$ such that $\langle x, y\rangle \neq 0$ for some $y \in C^{\mu}$)
Thy 2.16 (Graham-Lehrer): Assume R is a field, $|\lambda|<\infty$.
Then $\left\{D^{\mu} \mid \mu \in \Lambda_{0}\right\}$ is a complete set of pairwise inequivalent irreducible A-modules.

Pf: If $D^{\mu} \neq 0$ it is irreducible (Prop. 2.11) and $D^{\mu} \neq D^{\lambda}$ for $\lambda \neq \mu$ (Corollary 2.13). A has a filtration with composition factors the cell modules of A (Lemma 2.14) so it suffices to prove that every irreducible composition factor of a cell module C^{λ} is isomorphic to D^{μ} for some $\mu \in \hat{N}_{0}$.

By induction (on elements of the poset Λ):

- If $\lambda \in \lambda$ is minimal, $C^{\lambda}=D^{\lambda} \neq 0$ (Lemma 2.15), so $\lambda \in \lambda_{0}$.
- If $\lambda \in \lambda$ is not minimal, let D be an irreducible composition factor of C^{2}. Either $D=D^{\lambda}$ or D is a composition factor of rad $C \lambda$.
Let $T=\{\nu \in \Lambda \mid \lambda \ngtr \nu\}$. This is a poses ideal in Λ, so $A(T)$ is an ideal of A.
A^{λ} annihilates $\operatorname{rad} C^{\lambda}$ (Prop 2.9 (iii)), but if $v \in T \backslash\{\lambda\}$ then $C^{\lambda} \cdot A^{\nu}=0$ (Lemma 2.7), so $\mathrm{rad} C^{\lambda} \cdot A(T)=0$, so every composition factor of rad C^{λ} is a composition factor of $A / A(T)$.

Extending $\phi \subset T \subset \Lambda$ to a maximal chain of poset ideals, Lemma 2.14 gives us a filtration with composition factors isomorphic to cell modules C^{ν}, $v \notin T$ (ie $\lambda>\nu$).

By induction, since $v<\lambda$, every irreducible composition factor of C^{ν} is isomorphic to some $D^{\mu}, \mu \in \wedge_{0}$.

Def' n : For $\mu \in \Lambda_{0}, \lambda \in \lambda$ define $d_{\lambda \mu}:=\left[C^{\lambda}: D^{\mu}\right]$, the composition multiplicity of the irreducible $D^{\mu} \subset C \lambda$. This is well-defined by the Jordan-Hiolder Theorem. The decomposition matrix of A is $D=\left(d_{\lambda \mu}\right), \lambda \in \Lambda, \mu \in \Lambda_{0}$.
$\frac{\text { Corollary 2.17: Let } R \text { be a field. Then } D \text { is unitriangular }}{\left.\text { (ie. } d_{\mu \mu}=1, d \mu \neq 0 \text { only if } \lambda \geqslant \mu\right)}$ (ie. $d_{\mu \mu}=1, \quad d_{\lambda \mu} \neq 0$ only if $\lambda \geqslant \mu$)
Pf: $d_{\lambda \mu} \neq 0$ iff there are submodules $M, N \subset C^{\lambda}$ s. th. $D^{\mu} \cong N / M$, so there is a nonzero homomorphism $\theta: C^{\mu} \rightarrow C^{\lambda} / M$ s.th. in $\theta / M \cong N / M \cong D^{\mu}$. So, if $d_{\lambda \mu} \neq 0, \lambda \geqslant \mu$ (prop. 2.12(i))
If $\lambda=\mu, \quad \theta(z)=M+r_{\theta} z \quad \forall z \in c^{\mu}$ (Prop.2.12 (ii)), and $\theta\left(C^{\mu}\right)=C^{\mu} \gamma / M \stackrel{N}{\cong} D^{\mu} \theta^{z}$ and D^{μ} is simple. But by Prop. 2.11 (ii) D^{μ} is the unique simple quotient of C^{μ}, so $M=r_{a d} C^{\mu}$ and $d_{\mu \mu}=1$.
For $\lambda \in \lambda_{0}$ we have both a simple D^{λ} and a principal indecomposable P^{λ} uniquely determined by $P^{\lambda} / R a d P^{\lambda} \cong D^{\lambda}$

Lemma 2.18: Assume R is a field and take $\lambda \in \lambda_{0}$, veN.
Then $d_{\gamma \lambda}=\operatorname{dim}_{R} \operatorname{Hom}_{A}\left(p^{\lambda}, C^{\nu}\right)=\operatorname{dim}_{R}\left(p^{\lambda} \otimes_{A} C^{* \nu}\right)$
Def'n: For $\mu \in \Lambda_{0}$, let $C_{\lambda \mu}:=\left[P^{\lambda}: D^{\mu}\right]$ be the composition multiplicity of $D^{\mu} C^{\mu^{\lambda}}$. Then $C:=\left(c_{\lambda \mu}\right), \lambda_{1} \mu \in \Lambda_{0}$ is the Cartan matrix of A

Lemma 2.19: For P a projective A-module and $l e=|\lambda|$,
P has an A-module filtration $\phi=P_{0} \subseteq P_{1} \subseteq \ldots \subseteq P_{k}=P$ such that the nonzero P_{i} / P_{i-1} are isomorphic to the nonzero modules $P \otimes_{A}\left(C^{+r} \otimes_{R} C^{v}\right)$ with each $\nu \in 1$ occurring exactly once.
$\leftrightarrow P \otimes_{A}\left(C^{* \nu} \otimes_{R} C^{\nu}\right) \cong\left(P \otimes_{A} C^{* \nu}\right) \otimes_{R} C^{\nu} \cong\left(\operatorname{dim} P \otimes_{A} C^{* \nu}\right) C^{\nu}$
So every projective A-module P has a cell module filtration.
Thm 2.20 (Graham-Lehrer): For \mathbb{R} a field and $|\lambda|<\infty$,
Pf: Let $\lambda, \mu \in \lambda_{0}$ and take $P=D^{\lambda}$ in Lemma 2.19.
Then P^{λ} has a filtration with composition factors the nonzero $P^{\lambda} \otimes_{A}\left(C^{* \nu} \otimes_{R} C^{\nu}\right)$ where each $\gamma \in \mathcal{L}$ occurs at most once.
So,

$$
\begin{aligned}
c_{\lambda \mu}=\left[P^{\lambda}: D^{\mu}\right] & =\sum_{\nu \in \Lambda}\left[\left(P^{\lambda} \otimes_{A} C^{* \nu}\right) \otimes_{R} C^{\nu}: D^{\mu}\right] \\
& =\sum_{\nu \in \Lambda} \operatorname{dim}_{R}\left(P^{\lambda} \otimes_{A} C^{* \nu}\right)\left[C^{\nu}: D^{\mu}\right] \\
& =\sum_{\nu \in \Lambda} d_{\gamma \lambda} d_{\nu \mu}
\end{aligned}
$$

(Lemma 2.18)

$$
\text { so } C=D^{t} D
$$

Theorem (Brauer-Humphreys reciprocity: $\left[P^{\lambda}: C^{\mu}\right]=\left[C^{\mu}: D^{\lambda}\right]$
Pf: Let $A=\left(a_{\lambda \mu}\right)$ with $a_{\lambda \mu}=\left[P^{\lambda}: C^{\mu}\right]$

$$
\text { Then } \begin{aligned}
C_{\lambda \mu} & =\left[P^{\lambda}: D^{\mu}\right]^{\lambda \mu} \\
& =\sum_{\alpha \in 1}\left[P^{\lambda}: C^{\alpha}\right]\left[C^{\alpha}: D^{\mu}\right]
\end{aligned}
$$

means $C=A D$
By The $2.20, C=D^{\top} D$, so $D^{\top} D=A D$
If D is square, by Corollary 2.17 it is invertible, and so $D^{\top}=A$, and

$$
\left[C^{\mu}: D_{\lambda}\right]=\left[P^{\lambda}: C^{\mu}\right]
$$

Lo we will see more details about this later.

