Cellular Algebras

Source: A. Mathas. clushou -	lecke algebras and tehur	, algebras of the	Symmetric Group
Vol. 15. University Lecture series.	American Mathematical So	ciety, Providence.	Rt. 1999.
0			, · · · · ·

1. Cellular Bases

R- commutative domain with 1

A - associative Unital R-algebra, free as an R-module

We want a basis of "A with particular properties:

Let (Λ, \geq) be a finite poset sith. For each $\Lambda \in \Lambda$, $T(\Lambda)$ is a finite indexing set and $C = \tilde{c} C_{\Lambda}^{2} | \Lambda \in \Lambda$, s, $t \in T(\Lambda)$ is a basis of A.

$$\underline{\text{Def'n}}$$
: (C, A) is a cellular basis of A if

Ex.1:
$$A = R[x], A = N$$
 (with the usual ordering)
For n e IN take $T(n) = \hat{t}n$, $C_{\hat{s}\hat{t}} = C_{nn}^{n} = x^{n}$, $C = \hat{z}x^{n}$: n e IN
 $A^{n} = x^{n+1} RExI$ (all terms of degree higher than n)
 $A^{n} = x^{n+1} RExI$ (all terms of degree higher than n)
 $A^{n} = x^{n+1} RExI$ (all terms of degree higher than n)
 $A^{n} = x^{n+1} RExI$ (all terms of degree higher than n)
 $A^{n} = x^{n+1} RExI$ (all terms of degree higher than n)
 $A^{n} = x^{n+1} RExI = x^{n} \hat{z}_{ai} x^{i}$
 $C_{\hat{s}\hat{t}} A = x^{n} \hat{z}_{ai} x^{i}$
 $= A_{0} X^{n} + \hat{z}_{ai} x^{k+i}$
 $= A_{0} X^{n} + \hat{z}_{ai} x^{k+i}$

$$\equiv a_0 tx^n \mod A^n$$

so for any set(λ) (the only option is s=n)

Ex.2: $A = Mat_{nxn}(R)$, $A = \{n_3\}$, $T(n) = \{1, 2, ..., n\}$, $C = \{E_{ij} \mid i \leq i, j \leq n\}$ Then (C, A) is a cellular basis of A:

(s=1)
$$E_{11} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c &$$

so
$$r_{u_1}^{u_1} = \alpha_1$$
, $r_{u_1}^{u_1} = b$
 $E_{X, 3}: Let A = A + (S_3) \cong |k < b_1, b_2 > / (b_1^{-1}(b_1 + b_1 + b_2 + b_2))$
Let $A = \frac{2}{5} (3) > (2,1) > (1^2) \frac{1}{5} (partitions of a time intercognation of a time intercome i$

by Erchor + rubeb, mod A⁽¹¹⁾
(b) (gray by Erchor + rubeb, mod A⁽¹¹⁾
This is satisfied by
$$r_E = q_+q^{-1}$$
, $r_U = 0$
The computations for $u \in T(\lambda)$ are smiller.
 $\underline{\lambda = (1^3)}: v \in T((1^1)], A^{(1^3)} = \langle b_1, b_2 \rangle$
 $c_W^{(1)} b_1 \equiv r_1 c_W^{(10)} \mod A^{(1^3)}$
 $b_1 \equiv r_1 \mod A^{(1^3)}$
 $c_W^{(1)} b_1 \equiv r_1 c_W^{(1^3)} \mod A^{(1^3)}$
 $b_1 \equiv r_1 \mod A^{(1^3)}$
 $c_W^{(1)} b_1 \equiv r_1 c_W^{(1^3)}$
 $b_1 \equiv r_1 \mod A^{(1^3)}$
 $c_W^{(1)} b_1 \equiv r_1 \mod A^{(1^3)} = r_2 \cdots A^{(1^3)}$
 $c_W^{(1^3)} b_1 = r_1 \mod A^{(1^3)} = r_2 \cdots A^{(1^3)}$
 $c_W^{(1)} b_1 \equiv r_1 \mod A^{(1^3)} = r_2 \cdots A^{(1^3)} = r_2 \cdots A^{(1^3)}$
 $c_W^{(1^3)} b_1 = r_1 \mod A^{(1^3)} = r_2 \cdots A^{(1^3)} \mod A^{(1^3)}$
 $c_W^{(1^3)} = c_W^{(1^3)} \cdots C^{(1^3)} \equiv r_1 \equiv c_W \mod A^{(1^3)}$
 $c_W^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = r_1 \equiv c_W \mod A^{(1^3)}$
 $c_W^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = r_1 \equiv c_W \mod A^{(1^3)}$
 $c_W^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = r_1 \equiv c_W \mod A^{(1^3)} = r_1 \equiv c_W \mod A^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = c_W^{(1^3)} = c$

Given
$$\lambda \in \Lambda$$
, $s \in \mathbb{C}(\Lambda)$ we define $C_s^2 \leq \Lambda^2/\Lambda^2$ as the
 R -submodule with basis $\tilde{s} \in \tilde{c}_{s}^{+} + \Lambda^{+}(t \in \mathbb{C}(\Lambda))$.
This is a right A -module (by \oplus) and the A -action
does not define the right cell module C^{Λ} as the
right A -module with basis $\tilde{s} \in \tilde{c}_{s}^{+}$ ($t \in \mathbb{C}(\Lambda)$] where
the $a \in \Lambda$, $c\hat{c}_{\alpha} = \mathbb{Z}$ to $\tilde{c}_{\alpha}^{+} + \tilde{c}_{\alpha}^{+} + \tilde{c}_{\alpha}^{+$

Prop. 2.11: Let R be a field and well be such that
$$D^{m} \neq 0$$

(i) The right A-module D^{m} is absolutely inclucible.
(ii) The Jacobson radical of C^{m} is rall C^{m} .
Pf: Let $x\neq 0$ be in C^{m} (rad C^{m}) so $(x_{n,y}) \neq 0$ for some
 $y \in C^{m}$, we can assume $(x_{n,y}) = 1$. Since $y \in C^{m}$
we can write $y = 2 rs C^{m}$ for some $rs elle$.
For $t \in C(y)$ let $y \neq i \equiv 2 rs C_{st} \in A$.
 $x \neq t \equiv x \leq rs C_{st}$
 $s \in t(x_{n})$
 $= 2 rs x C_{st}$
 $s \in t(x_{n})$
(prop 2.9 (iii)) $= 2 rc (x_{n}, c^{m}) C_{t}^{m}$
(bilinearity) $= (x_{n}, z^{m}) C_{t}^{m}$
 $= C_{t}^{m}$
So, x generates C^{m} as a right A-module, for
Any $x \in C^{m}$ rad C^{m} , so D^{m} is irreducible
for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $for any extrision field of R, and so is absolutely irreducible.
 $f(i)$ If $0 \neq 0$ then $3 \neq w$
 (ii) If $w = 3$ then $3 = 10 \in \mathbb{R}$ such that
 $f(i)$ If $w = 3$ then $3 = 10 \in \mathbb{R}$ such that
 $f(i)$ If $w = 3$ then $3 = 0$ (C^{m} , $c^{m}/R = 3 = 0$
 $f(C^{m}) \in C^{m}/R = 3 = 0$ ($C^{m} = 3 = 0$
 $f(C^{m}) \in C^{m}/R = 3 = 0$ ($C^{m} = 3 = 0$
 $f(C^{m}) = 0(any) = 0(a) y \in M + ao y = for any tet(a)$.
 $Since ay = 0$ unless $A \ni w$ (which proves (i)).$$$$$$$$$$

$\rightarrow \pm 0$ on the of $\alpha \alpha \beta$
- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
O(ct) = M + ao ye
$= M + a_0 \leq r_s C_{se}^{m}$
$= M + \sum_{s \in T(\mu)} r_s a_0 C_{st}^{\mu}$
$(2.9 (iii)) = M + \frac{2}{set(\mu)} c_s^{A} c_{t_s}^{A}$
(bilinearity) = $M + c_t^{(m)} \langle ao, y \rangle$
so that Q is the natural projection C"-> C"/M composed with multiplication by ro= < a o, y>, proving (ii)
<u>Cor 2.13</u> : If R is a field and $\mu, \lambda \in \Lambda$ are such that $D^{m} \neq 0$ and $D^{m} \cong D^{n}$, then $\mu = \lambda$.
(there exists a nonzero $O: C^{M} \rightarrow D^{7}$ so $\lambda \ge \mu$, and by symmetry $\mu \ge \lambda$, so $\mu = \lambda$).
are of this form.
3. Simple Modules in a Cellular Algebra
For this section we will assume 12/200 and so dim A < 00.
Cellular bases give us many filtrations of A.
Def'n: TCA is a poset ideal if MET, 2>M implies ZET.
For such a subset T let A(T) CA be the R-submodule with basis & chir [MET, u, v & C(M) Then A(T) = ZA ^M is an ideal. MET
Lemma 2.14: let \$= To CT, C, CT to = A is a maximal above of ideale in A
Then there is a total ordering μ_1, \dots, μ_k of Λ such that $T_i = \tilde{\xi} \mu_1, \dots, \mu_i$
for all i, and $0 = A(T_0) \xrightarrow{\frown} A(T_1) \xrightarrow{\frown} A(T_k) = A$ is a filtration of A with composition factors $A(T_i)/A(T_{i_1}) \stackrel{\cong}{=} C^{*,mi} \otimes C^{mi}$.
Pf! Since the chain is maximal, $ T_i \setminus T_{i+1} = 1$ for $i = 1,, k$. There is therefore a total ordering $\mu_i,, \mu_k$ of the elements in Λ such that $j > i$ when $\mu_i > \mu_i$ and $T_i = i \mu_1,, \mu_i i$, $1 \le i, i \le k$.

Therefore
$$A^{\text{min}} \leq A(T; n)$$
 and $f c_{\text{min}}^{\text{min}} + A(T; n) | un f(un) f$
is a basis of the ideal $A(T; n) / A(T; n)$, so that the
 R -linear map $(A(T; n) / A(T; n)) \rightarrow c_{\text{min}}^{\text{min}} A^{\text{min}}$
is an (A, A) -bimodule isomorphism for i=1,..., k.

Recall that $C^{\text{min}} \otimes C^{\text{min}} \otimes C^{\text{min}} = C^{\text{min}} A^{\text{min}}$
so each infeducible composition factor of A is a
composition factor of some cell module, which we
will investigate.

(emma 2.15: Suppose $A \in A$ is minimal, then $C^{\mu} \oplus D^{\mu}$ (recall $D^{2}:=C/red C^{2}$)

Fi: We need to show that rad $C^{\mu} = 0$.

Suppose $X \in red C^{\lambda}$, and write $X = \sum r_{u}C_{u}^{\lambda}$ for some $r_{u} \in R$.
Fix set(A) and let $\hat{X} = \sum r_{u}C_{u}^{\lambda}$ for some $r_{u} \in R$.

Fix set(A) and let $\hat{X} = \sum r_{u}C_{u}^{\lambda}$ for some $r_{u} \in R$.

for all $y \in C^{\mu}$, so ther $u_{i} \in C(D)$

 $\hat{X} \subset u^{\mu} = \sum r_{u}C_{u}^{\lambda} C_{u}^{\mu}$ set(A) and

 $\hat{X} \subset u^{\mu} = \sum r_{u}C_{u}^{\lambda} C_{u}^{\lambda}$ iff $x = 0$. Since $x \in Crad C^{\lambda}$, $(x_{i}, y) = 0$

for all $y \in C^{\lambda}$, so for $u_{i} \in C(D)$

 $\hat{X} \subset u^{\mu} = \sum r_{u} C_{u}^{\lambda} C_{u}^{\lambda}$

 $\hat{X} \subset u^{\mu} = \sum r_{u} C_{u}^{\lambda} C_{u}^{\lambda} C_{u}^{\lambda}$

 $\hat{X} \subset u^{\mu} = \sum r_{u} C_{u}^{\lambda} C_{u}^{\lambda} C_{u}^{\lambda}$

 $\hat{X} \subset u^{\mu} = \sum r_{u} C_{u}^{\lambda} C_{u}^{\lambda} C_{u}^{\lambda}$

 $\hat{X} \subset u^{\mu} = \sum r_{u} C_{u}^{\lambda} C_{u}^{\lambda}$

By induction (on elements of the poset Λ):
· If $\lambda \in \Lambda$ is minimal, $C^{2} = D^{2} \neq 0$ (Lemma 2.15), so $\lambda \in \Lambda_{0}$
· IP REA is not minimal, let D be an irreducible
composition factor of C ³ . Either D=D ³ or D is a
Long and the start of the start of the
composition tactor of tace.
Int D= IVEA 1 2 XX The x a coset ideal
in 1, so A(T) is an ideal of A.
A" annihilates rad C" (Prop 29 (iii)) but it
$V \in \mathbb{P} \setminus \{2,3\}$ then $\mathbb{C}^2 \cdot \mathbb{A}^{\vee} = \mathbb{O}$ (10 mm $(2,3)$)
so rad ("· A(1') = 0, so every composition
tactor of rad (2) is a comparition tactor
\rightarrow of $A(A(T))$.
Extending QCTCA to a maximal chain
of possible ideale lamma 214 aires us a
UI poser ideats; cerimita zini gives us a
= coll m o dulog CV y & T (20 2 > y)
Bu induction share vit 2 proper inorducible
composition tactor of C is isomorphic to
come D ^M CA
Def'n: For mEL, REA define drui= [C ² : D ⁴], the composition
and ballet of the second of the Duc CD the
multiplicity of the inteducible succession inis is
well-defined by the Jordan-Hölder Theorem.
The decreasible metals of A > D-(A > Oca CA
The accomposition matrix of A is D- (agin), Ach, preno.
Cocallogy 217: Let Q be a Balal The D is waited and
containing entry were to be a metal when I is available
$- (ie. d\mu n = 1, d n \neq 0 only (f \lambda \ge n) $
PE: da # 0 itt there are submodules M, N C C
The The Hold is a second
S. W. D - NTR, SO THERE IS a HONELD
homomorphism $O: C^{-} \rightarrow C^{+}/H$ s.th.
$P/M \in N/M \cong D^{M}$ so $P = 1 \neq 0$ (2.2.2)
(mo)m = 10 m = 0, mo m o, no monoperative
$I + \lambda = \mu_{\lambda} \Theta(\alpha) = M + \Gamma_{\alpha} \forall \lambda \in C^{n} (Prop. 2.12 (ii)),$
Arch = culles ~ Du o o on u
and occ j-c im - J and J is simple.
But by Prop. 2.11 (ii) Du is the unique simple
quotient or c , so m-tacc and appel,
Encard when have been a share and share and
int ACA o we work a simple p and a principal
indecomposable r" uniquely determined by PT bad Pr=D'

Lemma 2.18: Assume
$$L$$
 is a field and take $\lambda \in A_{0}$, $\nu \in A_{0}$
Then $d_{\gamma\lambda} = \dim_{\mathbb{R}} \operatorname{Hom}_{\lambda} (P^{\lambda}, C^{\vee}) = \dim_{\mathbb{R}} (P^{\lambda} \otimes_{\Lambda} C^{\vee})$
Defin: For $\mu \in A_{0}$, let $C_{\lambda\mu} := [P^{\lambda}: D^{\mu}]$ be the composition
multiplicity of $D^{\mu} \subset P^{\lambda}$. Then $C := (c_{\lambda,\mu}), \lambda \mu \in A_{0}$ is the
Cartan matrix of A
Lemma 2.19: For P a projective A -module and $k = |A|$,
 P has an A -module P_{λ} . Then $C := (c_{\lambda,\mu}), \lambda \mu \in A_{0}$ is the
nonzero module P_{λ} ($C^{\mu} \otimes_{P} C^{\mu}$) C^{μ}
Such that the nonzero $P_{\lambda} P_{\lambda}$, are isomorphic to
the nonzero module P_{λ} ($C^{\mu} \otimes_{P} C^{\mu}$) C^{μ}
So every projective A -module P has a cell module A^{μ} (A^{μ}) C^{μ}
So every projective A -module P has a cell module $|A|$ cas
 $P \otimes_{\lambda} (C^{\mu} \otimes_{P} C^{\mu}) \cong (P \otimes_{\lambda} C^{\mu}) \otimes_{\mathbb{C}} C^{\mu} \cong (C^{\mu} \otimes_{\mathbb{C}} C^{\mu}) C^{\mu}$
So every projective A -module P has a cell module $|A|$ cas
 $Thm 2.20$ (Graham - Lehver): For L a field and $|A|$ cas
 $Then P^{λ} has a fibration with composition
factors the nonzero $P^{\lambda} \otimes_{\lambda} (C^{\mu} \vee \otimes_{\mathbb{C}} C^{\mu})$
where each $\gamma \in A$ occurs at most one.
So, $c_{\lambda\mu} = [P^{\lambda}: D^{\mu}] = \sum_{\lambda} [(P^{\lambda} \otimes_{\lambda} (C^{\mu})] \otimes_{\mathbb{C}} C^{\mu}: D^{\mu}]$
 $\gamma \in A$
 $\gamma \in A$ dynd γ_{μ}
 $\gamma \in A$
 $\gamma \in A$ $\gamma_{\mu} = \sum_{\lambda} d_{\lambda} \gamma_{\lambda} d_{\lambda} \gamma_{\mu}$
 $\gamma \in A$
 $P^{\mu}: Let A = (a_{\mu})$ with $a_{\mu} = [P^{\lambda}: C^{\mu}] = [C^{\mu}: D^{\mu}]$
 $P^{\mu}: Let A = (a_{\mu})$ with $a_{\mu} = [P^{\lambda}: C^{\mu}]$
 $P^{\mu}: C^{\mu} = \sum_{\lambda} (P^{\lambda}: C^{\lambda}] [C^{\mu}: B^{\lambda}]$
 $p_{\lambda} = \sum_{\lambda} (P^{\lambda}: C^{\lambda}] [C^{\mu}: D^{\lambda}]$
 $P^{\mu}: D^{\mu} = \sum_{\lambda} (P^{\lambda}: C^{\lambda}] [C^{\mu}: D^{\lambda}]$
 $P^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}$ $P^{\mu}: C^{\mu}$ $P^{\mu}: D^{\mu}$
 $P^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}$
 $P^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}$
 $P^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}: D^{\mu}$
 $P^{\mu}: D^{\mu}: D$$