4. Equivalence relations: how to glue in math

We have been talking about gluing spaces such as

Recall: a sorface without boundary is a subset of 3D space such that arand every point there is a "disk" : a copy of $B^{2}=\left\{x^{2}+y^{2} \leq 1\right\}=$

Examples:

Goal: We want to "glue" surfaces together
For instance, take the square with "identified sides"

Question: how does one make this mathematically rigorous?

The language of sets
A set is a collection of objects without order or repetitions.
Examples: $\{1,2,3\}, \mathbb{R},\left\{\right.$ knots in $\left.\mathbb{R}^{3}\right\}, \ldots$

$$
L \text { Definite } L \rightarrow \text { Infinite }
$$

- Element in a set: $1 \in\{1,2,3\}$ means " 1 is an element of the ot $\{1,2,3\}$
\longrightarrow Negation: dephant $\notin\{1,2,3\}$
- Equality: two sets are equal if they have the same elements:

$$
\{1,2,3\}=\{2,1,3,2\}
$$

L, repetitions are ignored"

- Empty set: $\phi=\{3$
- Subsets: $A \subseteq B \quad A$ is a subset of A if every element in A is in B

$$
\{1,2\} \subseteq\{1,2,3\} \text { bot }\{1,7\} \nsubseteq\{1,2,3\}
$$

- Union: $A \cup B=\{$ elements in A or in $B\}$

$$
\{1,2\} \cup\{2,3,4\}=\{1,2,3,4\}
$$

- Intersection: $A \cap B=$ elements in A and $B J$

$$
\{1,2\} \cap\{2,3,4\}=\{2\}
$$

- Set defined by condition: $\{x \in \mathbb{R} \mid x>0\}=\{$ positive veal numbers $\}$

$$
\{n \in \mathbb{Z} \mid n \text { is even }\}=\{0, \pm 2, \pm 4, \ldots\}
$$

- Product of rets: $A \times B=\{(a, b) \mid a \in A, b \in B\}$. Example: $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$

Remark: A set may contain other sets, for instance $\{1,\{1,2\}\}$ is a valid set.

Question: prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Equivalence relations
Very often we want to say two elements in math are not equal, but "equivalent" in some sense.
Examples:

- Days of the week: March 25 \& March 18 bot they were both Saturdays
- Two spaces are homeomorphic bot not equal:

- Two sets which have the same sire bot are not equal

Definition: a relation \sim on a set X is a subset of $X \times X$. It is an equivalence relation f, additionally,

- (Reflexinty) For all $x \in X, x \sim x$
- (Symmetry) : For all $x, y \in X, x \sim y \Leftrightarrow y \sim x$.
- (Transitivity) For all $x, y, z \in X, x \sim y, y \sim z \Rightarrow x \sim z$.

Example: the relation on \mathbb{Z} given by $x \sim y \Leftrightarrow x-y$ is a multiple of 3 is an equivalence reblion.
-Reflexinty: $x-x=0=3 \cdot 0$, so $x \sim x$

- Symmetry: $x \sim y \Rightarrow x-y=3 \cdot n \Rightarrow y-x=3 \cdot(-n) \Rightarrow y \sim x$
- Transitinty: $x-y=3 \cdot n_{1}, y-z=3 \cdot n_{2} \Rightarrow x-z=x-y+y-z=3 \cdot\left(n_{1}+n_{2}\right) \Rightarrow x \sim z$

Equivalence classes
Given an equivalence relation, the equivalence dar of an dement $x \in X$ is the set $[x]=\{z \in X \quad z \sim x\}$
Example: using ~ as above, $[1]=\{n \in \mathcal{U} \mid n-1$ is a mptiple of 3$\}$
Picture:

The set of equivalence classes forms the quotient by the relation \sim. In this case,

$$
\begin{aligned}
& \cong\left\{\begin{array}{ccc}
0 & 0 & 0 \\
{[0]} & 01] & 0 \\
& &
\end{array}\right]
\end{aligned}
$$

Quotients allow us to gie!
Example: Take the circle X and choose points A, B, C, D on X

Define the equivalence relation on $X:\left\{\begin{array}{l}A \sim D \\ B \sim C\end{array}\right.$
Then the quotient X / \sim is the set of equivalence classes:

- [p] for $p \neq A, B, C, D$
- $[A]=\{A, D\}=[D]$
- $[B]=\{B, C\}=[C]$

In other words, the quotient space is in bijection (and this bijection is a homeomorphism) with

Example: Take $X=$ unit disc $=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$

$$
S=\text { unit circle }=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

Define the equivalence relation \sim on X by: $\left\{\begin{array}{l}x \sim x \text { for all } x \\ x \sim y \text { for all } x, y \in S\end{array}\right.$ "glue all the points of S together"
$x=$

$x / \sim=$

a single point
 a. sphere!

Finally, we can make sene of the pacman question:

Furthermore, this is homeomorphic to the usual torus in \mathbb{R}^{3}, given by

$$
[0,1] \times[0,1] / \sim \longrightarrow \mathbb{R}^{3}
$$

$$
(x, y) \longmapsto(\cos (x) \cos (y), \cos (x) \sin (y), \sin (x))
$$

