4. Equivalence classes: how to glue in math
5. The set difference of X and y is defined as: $x \backslash y=\{x \in X \mid x \notin Y\}$. Prove the following equaties:
a) $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$
b) $A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$

Draw their associated Venn diagrams
2. Decide which of the following relations are equivalence relations. Indicate the equivalence classes when this is the are
a) (\mathbb{R}, \sim), where $x \sim y$ means that x and y have the same sign
b) (\mathbb{R}, \sim), where $x \sim y$ mean that $x \geqslant y$
c) (\mathbb{Z}, \sim), where $x \sim y$ means that $x-y$ is even.
3. Let $C y P=\left\{(x, y, z) \mid x^{2}+y^{2}=1,-1 \leqslant z \leqslant 1\right\}$ be the cylinder D. Describe Cyl/n as best as you can for the folboing equivalence relations:
a) $(x, y, 1) \sim\left(x^{\prime}, y^{\prime}, 1\right)$ for all $x, y, x^{\prime}, y^{\prime}$
b) $\left\{\begin{array}{l}(x, y, 1) \sim\left(x^{\prime}, y^{\prime}, 1\right) \text { for all } x, y, x^{\prime}, y^{\prime} \\ (x, y, 0) \sim\left(x^{\prime}, y^{\prime}, 0\right) \text { for all } x, y, x^{\prime}, y^{\prime}\end{array}\right.$
c) $(x, y, 1) \sim(x, y, 0)$ for all x, y
d) $(x, y, z) \sim\left(x, y, z^{\prime}\right)$ for all x, y, z, z^{\prime}
e) $(x, y, z) \sim(-x, y, z)$ for all x, y, z
f) $(x, y, z) \sim(-x,-y, z)$ for all x, y, z
4. Identify the following diagrammatically presented quotients of the unit square:
a)

b)

c)

d)

5. Wrap your head around the following space:

6. (Challenge) Prove that the space in 5 cannot conepond to a dosed surface in \mathbb{R}^{3}. Hint: a surface in \mathbb{R}^{3} has, at each point, an "outride" and an "inside" diredion, for instance:

Why. cant we assign such a direction at each point of the surface of 5 in a "coherent" way?

