Spaces and symmetries (Week 1)
0 . Introductions (everyone) + surrey

1. Intro to topology

Notions of space in mathematics
Planar spaces (sets of points in \mathbb{R}^{2})
Which of the following spaces are "the same"?

\square
\square
\square
(Discuss geometry vs topology)
In topology, distances donn matter, two spaces are "homeoworphic". if there is a continuous correspondence between them:

Correspondence: each point in X gets mapped to one point in Y and vice-versa.
Equivalently: $f: x \rightarrow y$ and $g: y \rightarrow x$
are inverses to each otter
Continuous: - Informally: the map $x \rightarrow y$ doesnt"break" it or "glue" t, and vice-versa

Not continuous correspondence

- Formally: for every $y=f(x)$ in Y, and neighborhood around $y\left(=\right.$ pants within a sind distance f_{y}) there exists a neighborhood around x (=pants within a small distance $f x$) that gels mapped to the neighborhood around y.

Example: a map which is not continuous: $x=[-1,1], y=1,-1 \quad f(x)=\operatorname{sign}(x)$

Example: A continuous mapping which is not a correspondence:

$$
f\left(\left(x, x^{2}\right)\right)=x^{2}
$$

Example: proc that the line segment $(0,1)$ is homeormorphic to the segment of the parabola $y=x^{2}$. between 0 and 1.

Step 1: Identify the spaces:

$$
x=\frac{1}{1}, \quad y=\frac{\left.\right|_{1} ^{1}}{1}
$$

Step 2: Find a continuous map $f: x \rightarrow y$

$$
\text { My map: } \quad f(x)=\left(x, x^{2}\right)
$$

(Tip: polynomials, exponentials, square rats, $\sin , \cos , \ldots-$ are all continuous)

Step 3: Find a continuous map $g: y \rightarrow x$

$$
\text { My map: } \quad g(x, y)=\sqrt{y}
$$

Step 4: Check that $g \circ f=i d_{x}$

$$
\begin{gathered}
f \circ g=i d y \\
g \circ f(x)=g(f(x))=g\left(x, x^{2}\right)=\sqrt{x^{2}} \stackrel{x>0}{=} x \\
f \circ g\left(x, x^{2}\right)=f\left(\sqrt{x^{2}}\right)=f(x)=\left(x, x^{2}\right)
\end{gathered}
$$

Example: Prov that a square and a circle are homeomorphic
Step 1: Identify the spaces:

Far segments: $A:(t, 1-t) \quad t \operatorname{lom} 0$ to 1
$y=$
B: $(t-1, t)+\operatorname{rom} 0$ to 1
$C:(t-1,-t) t \operatorname{lom} 0$ to 1
$D_{0}(t, t-1) t \operatorname{lom} 0$ to 1

Step 2: Find a continuous map $f: X \rightarrow Y$

$$
\begin{array}{ll}
f_{A}(x, y)=\left(x, \sqrt{1-x^{2}}\right) & \text { Continuity at the end points } \\
f_{B}(x, y)=\left(x, \sqrt{1-x^{2}}\right) & f_{A}(0,1)=(0,1)=f_{B}(0,1) \\
f_{C}(x, y)=\left(x,-\sqrt{1-x^{2}}\right) & f_{C}(0,-1)=(-1,0)=f_{C}(-1,0) \\
f_{D}(x, y)=\left(x,-\sqrt{1-x^{2}}\right) & f_{D}(1,0)=(1,0)=f_{D}(0,-1)
\end{array}
$$

Step 3: Find a continuous map $g: y \rightarrow X$

$$
\begin{array}{ll}
g_{A}(x, y)=(x, 1-x) & \text { Continoty at the end points: } \\
g_{A}(x, y)=(x, x+1) & g_{B}(-1,0)=(-1,0)=g_{C}(-1,0) \\
g_{C}(x, y)=(x,-1-x) & g_{C}(0,-1)=(0,-1)=g_{D}(0,-1) \\
g_{0}(x, y)=(x,-1+x) & g_{D}(1,0)=(1,0)=g_{A}(1,0)
\end{array}
$$

Step 4: Check that $g \circ f=i d_{x}$

$$
f_{A} \circ g_{A}\left(x, \sqrt{1-x^{2}}\right)=f_{A}(x, 1-x)=\left(x, \sqrt{1-x^{2}}\right)
$$

Exercises

Exercises

1. Intro to topology
2. Show that the following 1 -manifolds are homeomarphic.
a) The ont interval $(0,1)$
b) The internal $(3,5)$
c) (Challenge) the interval (a, b), (or $a<b$
3. Argue that of two spaces X and Y are homemoophec, and in torn another two spaces Y and z are homeomorphics then X and Z are homeomorphic.
4. Prove that the (empty) triangle X with vertices $(0,0),(1,0)$ and $(0,1)$ and the (empty) triangle y wt th ventres $(0,0),(1,0)$ and $(2,1)$ are homemomorphic. Challenge : pose this for their interior too
5. Prove that the "tripod"
 is not homeomorphic to the uni interval (Hint: what happens when we remove the origin)
 like either an internal, or a tripod, po instance:
 Find two webs W_{1}, W_{2} with two "tripod points" each such that W_{1} and W_{2} are not homemonorphic: How do you know they aren't?
