0. Introductions (everyone) + sincy 1. Intro to topology Notions of space in mathematrics <u>Planer spaces</u> (rets of parts in R ²) Which of the follows space are "the same"? (Discuss geometry vs topology) In topology, dictance cant mather, two spaces are "honecomorphic" if there is a continues conceptedate televen them: Equivalently: $f(x, -y)$ and $g(y \rightarrow x)$ are insists to extended Continues: Informally: the map $X \rightarrow Y$ doort low it or file it, and vice-retra Not continues correspondence • Formally: for every $y = f(x)$ in Y, and neighborhood around y (= parts within a small distance $d(x)$)	Spases and summetizes (1		· · · · · ·	· · · · ·	· · · · ·	· · · · ·
 1. Into 6 topology. Notions of space in mathematics: <u>Planar spaces</u> (rets of pants in R²) Which of the following spaces are "the some? Obscues geometry vis topology. In topology, dictores cont matter, two spaces are "tonecomoghic" if there is a continuous correspondence between them Correspondence: each point in X gets mapped to one point in Y and vice-ressa. Equinationally: f: X → Y and g V→ X are instance to each the some to each the toright it, and vice-ressa. Continuous: - Informally. The map X → Y dependence for original it, and vice-ressa. Not continuous correspondence Tormally: for every y = f(x) in Y, and neighborhood around y (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small debaace three ends a neighborhood around x (= parts within a small deb	0. Introductions (everyone) + Survey	· · · · · ·	· · · ·	· · · ·	· · · ·
Notions of space in mathematics <u>Planar spaces</u> (rets of paints in R ²) Which of the following spaces are "the same? (Discuss geometry) vis topology) In topology, distances don't mather, two spaces are "toneconceptic" if there is a continuous correspondence between them Correspondence: each point in X gils mapped to one point in Y and vice-ressa. Equivalently: f X - Y and g Y - X are instare to ach other Continuous: Informally: the map X - Y down't bank it or file it, and vice-ressa Informally: the map X - Y down't bank it or file it, and vice-ressa Not continuous correspondence • Tormally for every y = f(x) in Y, and neighborhood around y (e parts within a and dobance there exists a neighborhood around x (e parts within a small dobance there exists a neighborhood around x (e parts within a small dobance there exists a neighborhood around x (e parts within a small dobance there exists a neighborhood around x (e parts within a small dobance there exists a neighborhood around x (e parts within a small dobance there exists a neighborhood around x (e parts within a small dobance)	1. Intro to topology					
Planar spaces (rets of points in \mathbb{R}^2) Which of the following spaces are "the same? (Discuss generatives of the spaces are "toneconorphic" if there is a continuous correspondence between them: For spaces with point in X gets mapped to one point in Y and vice-versa. Equivalently: $f: X \rightarrow Y$ and $g: Y \rightarrow X$ is interes to each other Continuous: Informally: the map $X \rightarrow Y$ doesn't beak it or given it, and vice-versa. Equivalently: $f: X \rightarrow Y$ and $g: Y \rightarrow X$ is interes to each other Continuous: Informally: the map $X \rightarrow Y$ doesn't beak it or given it, and vice-versia. Not continuous correspondence • Tormally: for every $y = f(x)$ in Y, and neighborhood around y (= points within a small distance there exists a neighborhood around x (= points within a small distance $d = x$)	Notions of space in	matematics	· · · · · ·		· · · ·	
Which of the follows spaces are "the some? (Discuss geometry vs topology) In topology, distances don't matter, two spaces are "honecomorphic" if there is a continued correspondence between them:	Planar spaces (sets of points in R^2)	· · · · ·			
(Discuss geometry) vs topology) In topology, dictances don't matter, two spaces are "homeomorphic" if there is a continuous correspondence between them: Correspondence: each point in X gets imapped to one point in Y and vice-rense. Equivalently: $j: X \rightarrow Y$ and $j: Y \rightarrow X$ are inners to each them Continuous: Informally: the map $X \rightarrow Y$ doesn't beak it or glue it, and vice-rense.	Which of the follows	z spaces are "the s	ame [®] ?			
(Discuss geometry) vs topology) In topology, dictances don't matter, two spaces are "homeomorphic" if there is a continuous correspondence between them: Correspondence: each point in X gets mapped to one point in Y and vice-versa. Equivalently: f: X-Y and g: Y-X are interes to each other Continuous: Informally: the map X-Y doesn't brack it or glue it, and vice-versa Not continuous correspondence Tormally: for every y=f(x) in Y, and neighborhood around y (= points within a small distance f x)					· · · · · ·	
In topology, distances don't matter, two spaces are "homeomorphic" if there is a continuous correspondence between them: Correspondence: each paint in X gets imapped to one paint in Y and vice-versa. Equivalently: f: X - Y and g: Y - X our increase to each other Continuous: Informally: the map X - Y doesn't brack it or glue it, and vice-versa Mot continuous correspondence • Formally: for every y = f(x) in Y, and neighborhood around y (= pains within a small distance there exists a neighborhood around x (= paints within a small distance f x)					uss geometry	vs topology)
Equivalently: $f: X \rightarrow Y$ and $g: V \rightarrow X$ one inverse to each other Continuous: Informally: the map $X \rightarrow Y$ doesn't "brack it or "glue" it, and vice-versa f(x) Not continuous correspondence • Formally: for every $y = f(x)$ in Y, and neighborhood around y (= prints within a small distance. there exists a neighborhood around x (= prints within a small distance $f(x)$	Correspondence : each point	t in X acts mapped to one	point in Y and	· · · · ·	· · · · ·	· · · · ·
Continuous: • Informally: the map X-y doesn't break it or glue it, and vice-versia I(x) Not continuous correspondence • Formally: for every y = 1(x) in Y, and neighbox had around y (= points within a small distance of there exists a neighbox had around x (= points within a small distance of x)	Equivalent	$Y: f: X \rightarrow Y$ and $g: Y \rightarrow X$ are inverse to each other			· · · · ·	· · · · ·
• Formally: for every $y = f(x)$ in Y, and neighborhood around y (= points within a small distance. there exists a neighborhood around x (= points within a small distance of x)	Continuous: • Informally	the map X→Y doesn't "bread X→Y doesn't "bread the map X→Y doesn't "bread the map X	ak it or glue it, ((x) ondence	and vice -vena	 	
	• Formally	for every $y = f(x)$ in there exists a neighborh	y, and neighborh and around x	naad around y (= points within	(= points with a small distance	in a smill distance $(1 \times)$

Example: a map which is not continuous: $X = [4, 5], Y = 4, -1$ $f(x) = sign(x)$ Drample: A continuous mapping, which is not a correspondence: $f((x, x^0)) = x^2$ $f(x, x^0) = x^2$ $f(x) = x^2$		
$Finally = \frac{1}{2}$ $Fina$	Example:	a map which is not continuous: $X = [-1, 1]$, $Y = 1, -1$ $f(x) = sign(x)$
Brangle: A continues mapping which is not a correspondence: $ \begin{aligned} & f(t_{n,x}(t)) = x^{2} \\ & f($		
Example: A continuous mapping which is not a correspondence: $ \begin{aligned} f(x_{i},x^{i}) &= x^{2} \\ f(x_{i},x^{i}) &= x^{2} \\ \hline f(x_{i},x^{i}) &= x^{$		
Example: A continuous mapping which is not a correspondence: $ \begin{aligned} f((x,x^{2})) = x^{2}, \\ f(x,x^{2}) = x^{2},$	• • •	-1 -1
Brangle: A continuous mapping which is not a correspondence: $ \begin{cases} (x_{i,x}^{(4)}) = x^{2} \\ (x_{i,y}^{(4)}) = x^{2} \end{cases} $ Example: proce that the line regiment (0,5) is homomorphic to the segment of the pandola $y = x^{2}$. Example: proce that the line regiment (0,5) is homomorphic to the segment of the pandola $y = x^{2}$. Step 1: Identify the spaces: $x = \frac{y}{2} = \frac{y}{2}$. Step 2: Find a continuous map $f(X \to Y)$ My map: $f(X) = (x, x^{2})$ Step 3: Find a continuous map $g: Y \to X$ My map: $g(x_{i}) = (x_{i})$ Step 4: Check that $g \circ f = id_{X}$ $f \circ g = id_{Y}$ $g \circ f(X) = g(f(X)) = g(x_{i}x^{2}) = fr = x \\ f \circ g(x_{i}x^{2}) = f(G\overline{X}) = f(x) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = f(G\overline{X}) = f(x) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = f(G\overline{X}) = f(x) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = f(G\overline{X}) = f(x) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = f(G\overline{X}) = f(x) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = f(G\overline{X}) = f(x) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = f(G\overline{X}) = f(x) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = f(x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = f(x) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2}) = (x_{i}x^{2}) \\ f \circ g(x_{i}x^{2})$		
Example: proce that the line segment (0, 4) is homeomorphic to the segment of the parabela $y = x^{2}$. Example: proce that the line segment (0, 4) is homeomorphic to the segment of the parabela $y = x^{2}$. Step 1: Identify the spaces: $x = \frac{1}{x^{2}}, y = \frac{1}{x^{2}}$. Step 2: Find a continuous map $j : X \rightarrow Y$. Ny map: $j(x) = (x_{1}, x^{2})$. (Tip: polynomials, exponentials, space mis, sin, exp are all continuous). Step 3: Find a continuous map $g: Y \rightarrow X$. Ny map: $g(x_{1}) = i \sqrt{y}$. Step 4: Check that $g \circ j = i d_{X}$. $j \circ g = i d_{Y}$. $g \circ j(x) = g(j(x)) = g(x_{1}x^{2}) = \sqrt{x^{2}}$.	Fxample:	A continuous mapping which is not a comes pondepre:
$\begin{cases} ((x_{i}x_{i}^{k})) = x^{2}, \\ (x_{i}x_{i}^{k}) = y^{2}, \\ (x_{i}x_{i}^{k}) = y^{2}$		
Example: proc that the line squaret (0,5) is homeomorphic to the segment of the parebola $y = x^2$. between 0 and 1. Step 1: Identify the spaces: $x = \frac{1}{2}$, $y = -\frac{1}{2}$ Step 2: Find a continuous map $j: X \rightarrow Y$ Hy map: $j(x) = (x, x^2)$ (Tip: polynomials, exponentials, quore million and and and a continuous j Step 3: Find a continuous map $y: Y \rightarrow X$ Hy map: $j(x) = (x, x^2)$ (Tip: polynomials, exponentials, quore million and a continuous j Step 3: Find a continuous map $y: Y \rightarrow X$ Hy map: $j(x_1) = id_X$ $j \circ g = id_Y$ $g \circ j(x) = g(j(x)) = g(x_1, x^2) = fx^{-2} = x$ $j \circ g(x, x^2) = \frac{1}{2}(fx^2) = \frac{1}{2}(x, x^2)$	• • •	$\int \left\{ \left(\left(x_{1} \chi^{2} \right) \right) = \chi^{2} \right\} $
Example: proc that the line regiment (0,1) is homeomorphic to the segment of the parabola $y = x^2$ between 0 and 1. Step 1: Identify the spaces: $X = \frac{1}{2}$ Step 2: Find a continuous map $j:X \rightarrow Y$. My map: $j(x) = (x_1, x^2)$ (Tip: polynomials, exponentials, square mills, sing cost are all continuous). Step 3: Find a continuous map $g:Y \rightarrow X$. My map: $g(c_1) = f\overline{Y}$. Step 4: Check that $g \circ f = id_X$ $f \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x_1, x^2) = f\overline{x} \stackrel{x \circ 0}{=} x$ $f \circ g(x_1, x^2) = f(\overline{x}) = f(x_1, x^2)$		$(\mathbf{y}, \mathbf{y}) = \mathbf{x}^{\mathbf{z}}$
Example: proce that the line regiment (0,2) is homeomorphic to the segment of the parabola $y = x^2$, between 0 and 1. Step 1: Identify the spaces: $\chi = \frac{y}{2} = \frac{y}{2}$ Step 2: Find a continuous map $j : X \rightarrow Y$ Hy map: $j(x) = (x, x^2)$ (Tip: polynomials, exponentials, square not, sing esc are all continuous) Step 3: Find a continuous map $g: Y \rightarrow X$ My map: $g(x_{ij}) = f\overline{y}$ Step 4: Check that $g \circ f = id_X$ $j \circ g = id_Y$ $g \circ j(x) = g(j(h)) = g(x_i x^2) = fr^2 = x$ $j \circ g(x_i x^2) = j((r\overline{x}) = f(x) = (x, x^2)$		
Example: proc that the line segment (0,1) is homeomorphic to the segment of the parabola $y = x^{2}$ between 0 and 1. Step 1: Identify the spaces: $\chi = \frac{y}{x}$, $y = \frac{y}{x}$ Step 2: Find a continuous map $f : X \to Y$ Ny map: $f(x) = (x, x^{2})$ (Tip: polynomials, exponentials, space ms, sin, cose are all continuous) Step 3: Find a continuous map $g: Y \to X$ Ny map: $g(x_{1}) = \overline{fY}$ Step 4: Check that $g \circ f = id_{X}$ $f \circ g = id_{Y}$ $g \circ f(x) = g(f(x)) = g(x, x^{2}) = \overline{fx} \stackrel{x \to Y}{=} x$ $f \circ g(x, x^{2}) = f(\overline{x}) = f(x) = (x, x^{2})$		
between 0 and 1. Step 1: Identify the spaces: $\chi = \frac{1}{2}$, $\gamma = \frac{1}{2}$ Step 2: Find a continuous map $j:X \rightarrow Y$. Hy map: $j(x) = (x, x^2)$ (Tip: polynomials, exponentials, equive nots, sing cess are all continuous) Step 3: Find a continuous map $g:Y \rightarrow X$. Hy map: $g(x_1) = (\overline{Y})$ Step 4: Check that $g \circ f = id_X$ $j \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x_1x^2) = fx^{-\frac{1}{2}} = x$ $f \circ g(x, x^2) = f(fx) = f(x, x^2)$	Evoluple -	none that the line segment (0.1) is homeomorphic to the segment of the particular $y = y^2$
between 0 and 1. Step 1: Identify the spaces: $\chi = \frac{1}{2}$, $\gamma = \frac{1}{2}$ Step 2: Find a continuous map $j: X \rightarrow Y$.Ny map: $j(x) = (x, x^2)$ (Tip: polynomals, exponentials, space nots, sin, ces are all continuous) Step 3: Find a continuous map $j: Y \rightarrow X$.Ny map: $g(xy) = \overline{1Y}$.Step 4: Check that $g \circ f = id_X$ $f \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x, x^2) = fx^2 = x$ $f \circ g(x, x^2) = f(fx) = f(x, x^2)$	LAUmpic	prove that the adjunction costs is non-company to the segment of the pulabola yes.
Step 1: Identify the spaces: $x = \frac{1}{2}, y = \frac{1}{2}$ Step 2: Find a continuous map $f(X \to Y)$. Hy map: $f(x) = (x, x^{2})$. (Tip: polynomials, exponentials, square mess, sin, cess are: all continuous) Step 3: Find a continuous map $g:Y \to X$. My map. $g(x_{1}) = f(\overline{Y})$. Step 4: Check that $g \circ f = id_{X}$ $f \circ g = id_{Y}$ $g \circ f(x) = g(f(x)) = g(x, x^{2}) = f^{x} = x$ $f \circ g(x, x^{2}) = f(f(\overline{x})) = f(x) = (x, x^{2})$		between 0 and 1.
$X = \frac{1}{2}, Y = \frac{1}{2}$ Step 2: Find a continuous map $f: X \rightarrow Y$. My map: $f(x) = (x, x^2)$. (Tip: polynomials, exponentials, square radi, sing ces, are all continuous). Step 3: Find a continuous map $g: Y \rightarrow X$. My map: $g(x_1y) = IY$. Step 4: Check that $g \circ f = id_X$ $f \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x, x^2) = Ix^2 = x$ $f \circ g(x, x^2) = f(Ix) = (x, x^2)$	• • •	. Step 1: Identify the spaces:
$X = \frac{1}{2} \qquad \qquad$		
Step 2: Find a continuous map $f: X \rightarrow Y$. Hy map: $f(x) = (x, x^2)$ (Tip: polynomials, exponentials, sins cest are all continuous) Step 3: Find a continuous map $g: Y \rightarrow X$. Hy map: $g(x_0) = \overline{fy}$. Step 4: Check that $g \circ f = id_X$ $f \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x, x^2) = \overline{fx}^2 \stackrel{x > 0}{=} x$ $f \circ g(x, x^2) = f(\overline{fx}) = f(x) = (x, x^2)$		$X = \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & $
Step 4: Check that $g \circ f = id_x$ $f \circ g = id_y$ $g \circ f(x) = g(f(x)) = g(x, x^2) = fx^{2} = x$	• • •	Step 2: Find a surface of IX -> N
Hy map: $f(x) = (x, x^2)$ Step 3: Find a continuous map $g: Y \rightarrow X$ Hy map: $g(x,y) = i \overline{y}$ Step 4: Check that $g \circ f = i d_X$ $f \circ g = i d_y$ $g \circ f(x) = g(f(x)) = g(x, x^2) = i \overline{x^2} = x$ $f \circ g(x, x^2) = f(\overline{x}, \overline{x}) = f(x, x^2)$		Cich en l'hite e continuaz map. Jev - 4
Step 3: Find a continuous map $g: Y \rightarrow X$ My map: $g(x_M) = \overline{IY}$ Step 4: Check that $g \circ f = id_X$ $f \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x, x^2) = \overline{Ix^2} = x$ $f \circ g(x, x^2) = f(\overline{Ix}) = f(x, x^2)$	• • •	
Step 3: Find a continuous map $g: Y \rightarrow X$ My map: $g(x_{1Y}) = \overline{1Y}$ Step 4: Check that $g \circ f = id_X$ $f \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x_1, x^2) = ix^2 = x$ $f \circ g(x_2, x^2) = f(\overline{1x^2}) = f(x_1) = (x_2, x^2)$		
My map: $g(x_{1Y}) = \sqrt{y}$ Step 4: Check that $g \circ f = id_X$ $f \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x_1 x^2) = \sqrt{x^2 + x^2}$ $f \circ g(x_1 x^2) = f(\sqrt{x^2}) = f(x) = (x_1 x^2)$. Step 3: Find a continuous map. $g: Y \rightarrow X$
Step 4: Check that $g \circ f = id_x$ $f \circ g = id_y$ $g \circ f(x) = g(f(x)) = g(x, x^2) = fx^2 = x$ $f \circ g(x, x^2) = f(fx^2) = f(x, x^2)$		$M_{y} = \sqrt{y}$
Step 4: Check that $g \circ f = id_X$ $f \circ g = id_Y$ $g \circ f(x) = g(f(x)) = g(x, x^2) = Ix^2 \stackrel{\times}{=} x$ $f \circ g(x, x^2) = f(Ix^2) = f(x, x^2)$		
$ \begin{array}{l} f \circ g = id_{y} \\ y \circ f(x) = g(f(x)) = g(x_{y}x^{2}) = ix^{2} \stackrel{x^{2} \circ}{=} x \\ f \circ g(x_{y}x^{2}) = f(f(x^{2})) = f(x_{y}x^{2}) \\ \frac{1}{y} f(x) = (x_{y}x^{2}) \\ \frac{1}{y} f(x) $		Step 4 Check that go f = idx
$g \circ f(x) = g(f(x)) = g(x, x^{2}) = f(x) = \frac{4}{3} \times \sqrt{3}$ $f \circ g(x, x^{2}) = f(f(x^{2})) = f(x, x^{2}) \times \sqrt{3}$		$l = 0 - i \lambda$
$g \circ f(x) = g(f(x)) = g(x, x^2) = \sqrt{x^2} = x$ $f \circ g(x, x^2) = f(\sqrt{x^2}) = f(x) = (x, x^2)$		×>0
$f \circ g(x, x^2) = f(x, x^2) = f(x) = (x, x^2) \checkmark$	• • •	$g_{1} \circ f(x) = g_{1}(f(x)) = g_{1}(f(x)) = g_{1}(x_{1}x^{2}) = f(x^{2} = x + x^{2})$
υ · · · · · · · · · · · · · · · · · · ·	• • •	$f \circ g(x, x^2) = f(x, x^2) = f(x) = f(x) = (x, x^2)$
		· · · · · · · · · · · · · · · · · · ·

. Step 1: Identify the	spaces:			
$\chi_{\pm} = \chi_{\pm} + \chi_{\pm$	ar segments A: (t, 1- B: (t-1, C: (t-1, D: (t, t	t) t from 0 to 1 t) t from 0 to 1 -t) t from 0 to 1 - t) t from 0 to 1	$\begin{array}{c} \gamma \\ \gamma $	(x,y) such that $x^{2}+y^{2}=1$ $y = \pm \sqrt{1-x^{2}}$
Step 2: Find a contin	wous map J:X	\rightarrow γ	· · · · · ·	
$f_{A}(x,y) = (x, \sqrt{1-x^{2}})$)	Continuity at	the end points:	$f_{A}(0,1) = (0,1) = f_{B}(0,1)$
$\int_{B} (x, y) = (x, \sqrt{4-x^2})$)		· · · · · ·	$\int_{B} (-1, 0) = (-1, 0) = \int_{C} (-1, 0)$
$\int_{C} (x, y) = (x, -1) - x$	•)		· · · · · ·	c(0,-1) = (0,-1) = c(0,-1)
$\int_{D} (x_{i}y) = (x_{i} - \sqrt{1-x})$;)	· · · · ·	· · · · · ·	$\int_{D} (1,0) = (1,0) = \int_{A} (1,0)$
Step 3: Find a continu	ious map g: Y	 → X		
$g_{A}(x,y) = (x, y)$	1-x) (ontinuity at the	end points: gA ($(0,1) = (0,1) = g_{B}(0,1)$
مر (x,y) = (x,y	(+1)		· · · · · · · ·	$(-1,0) = (-1,0) = g_{c}(-1,0)$
g _c (x,y) = (x, -1	i-x)		· · · · · · · · · · · · · · · · · · ·	$(0,-1) = (0,-1) = g_{0}(0,-1)$
$g_{0}(x,y) = (x, -$	1+x)	· · · · ·		$(1,0) = (1,0) = \int_{A} (1,0)$
Step 4 Check that	$g \cdot f = id_x$			
$a \circ g_A (x, \overline{1-x^*}) =$	$f_{A}(x, 1-x)$	$= (x, \sqrt{1-x^2})$	· ✓	
<u>, , , , , , , , , , , , , , , , , , , </u>			· · · · ·	
			· · · · ·	

Exercises	• •	• •	• •										•	•							
L. Intro	to tope	3 34		•	• •	• •	· ·	•		• •	•		•	•	••••	•	•	•	• •	•	•
1. S	how tha	t the	following	• . 1	-mant	lolds	ave	homeo	Morphic	· ·	•		•	•	• •	•	•	•	• •	•	•
۵) The u	nit inter	val (i	0 , <u>1</u>)					• • •		•		•	•		•	•	•		•	•
) The in	terval	(3,5)		• •	• •		•		• •	•		•	•	• •	•	•	•	• •	•	•
c`) (Chall	ince) the	intervo		(مر		nr a<	ь Ь	• •		•		•	•		•	•	•	• •	•	•
2 An	nue that	יין א. א לי			· · ·	ין ני המנה			haven	 calar			in time		nottor	tur	•		 I and	, 7	•
n , (")(у с . () ,	· · · · ·	un upo	~			 										, syata	<i>.</i>		•.	•
ave	nomeomorf	Maïc, Th	en X	ava	·. t.	OW	e home	somorf	phic.	· ·	•	· ·		•	•••		•	•	· ·	•	•
3. K	rove the	at the	(empt) . 1	triang	fle .	X unt	n vert	ti æs (, (0, 0), ((1,0)	and	(0,1) _.	and	The	(empt	τų) †	riangle	У.	•
with	vertices	(0,0),	(1,0)	and	(2,	1)	ave	home	omorphic	• •	Challe	nge:	prove t	his f	or the	ir in	teriors	too.	• •	•	
	· . ·					• •	• •	•	• •	• •	•	• •	· · .	<u>۸</u>	· .	•					
4. Kr	ove that	the.	"tripod	•			. is. nd	ł. ho	swanioch	nic to	the	unit	inte	rval.	. (H	lint:	what A	happen	s when	we r	iewo.
4. Kr	ove that	the .	"tripod				is no	t ho	omeomorp	hic to	the	unit	inte Dulia	rval .	(H	lint: * +	what the on	happen igivn)	s when	ue r	10 M D
4 Rri 5 ((ha	ove that Maye) Rea	the US that	"tripod" : 1-ma	unifolds	are	star	is no nees tha	t ho t "10	rally los	hic to k like	on inte	unit inval"	inte Defin	rval e a	(H) "web"	lint: to	what the ov be a	happent igin) space	s when e that	i we r i loca	remo ally
4 kri 5 (Chai fike	ore that llege) Rea either o	the UR that in interva	"tripod 1-ma	inijolds a tripe	are od,	spa for	is no nes tha instance	t ho t "10	rally lo	hic to k like	on inte Find	unit enval" two	inte Defin webs 1	rval . e a √₄, ₩₂	(H "web" with	lint: to two	what the ov be a "tripod	happeni 'givn) space points	s when e that cach	l we t Roca such	remo ally that
4 Kri 5 (Chai fike W1	ore that Nage) Rea either a and Wz	the US that in intervo are not	"tripod 1-ma 1, or homeon	a trips orphic	are od.	spa for tow	is no nes tha instance do you	t ho t "lo know	rally loc TD they	hic to k like) aren4	on inte Find	unit enval" two	inte Defin webs 1	rval e a Va, Wz	(H "web" with	lint: to two	what fre ov be a Twipod	happen: 'gin) space points	e that	i we r Roca Such	remoi ally thai
4 Kri 5 (Chai fike W1	ore that Name) Reca either o and W2	the UR that intervo are not	"triped 1-ma 1, or homeom	wijolds a tripe wrph:c	are od.	spa for	is no nees tha instance do you	t "lo t "lo know	omeomorp radly loo they	hic to k like)	on inte Find	unit enal"	inte Defin webs 1	rval e a V₄, ₩₂	"web"	lint: to two	what the ov be a Thipod	happen: igin) space points	e that	we r Roca such	remo: ally thai
4 Kri 5 (Chai fike Ws	ore that llege) Rea either a and Wz	the UR that in intervo are not	"tripod 1-ma 9, or homeon	a tripe wrph.ic	are od.	spa for	is no nes tha instance do you	t ho t "lo kinow	memorp rally loc	hic to k like aren4	on inte Find F?	unit enal" two	inte Defin webs 1	rval . Va, Wz	(H "web"	lint: 5 to two	what the ov be a Thipod	happen 'givn') space points	s when e that cach	i we t r loca such	remo; ally thai
4 Kri 5 (Chai fike W1	ore that None) Reca either o and W2	the UR that in intervo are not	"triped 1-ma	a tripe worphic	od.	spa for	is no nees tha instance	t ho t "lo kinou	mesmorp rally loc they	hic to k like aren4	on inte Find F?	unit ernal two	inte Defin webs 1	rval. ≤ a	(H	lint: to	what the ov be a Thipod	happen Space	e that	i we t i loca such	remo; ally thei
4 Kri 5 (Chai fike Ws	ore that Note: Rea either a and W2	the UR that in intervo are not	"tripod 1-ma	wijolds a tripe orphic	are od,	spa for	is no nes tha instance do you	t ho t "lo kinou	mesmorp rally loc they	hic to k like) aren4	on inte Find F?	unit innel" two	inte Defin webs 1	rval . Va, Wz	(H	lint: two	what the ov be a Thipod	happen 'givn') points	s when e fhat cach	i we t f loca such	remo ally thei
4 Kri 5 ((hai fike W1	ore that llege) Rea either a and Wz	the un intervo are not	"tripod 1-ma	inifolds a tripe orphic	are od,	spa for	is no mes tha instance do you	t "lo kinow	memorp rally for they	hic to k like	on inte Find f?	unit ennl two	inte Defin webs 1	rval . v ₄ , W ₂	(H	lint: two	what the ov be a Thipod	happen 'givn') points	s when	i we t r loca such	remo ally the
4 Kri 5 ((hai fike W1	ore that llege) Rea either o and W2	the UR that in intervo are not	"tripod 1-ma	a tripe worph ic	ore of	spa for	is no nes tha instance do you	t ho t "lo know	memorp rally loc	hic to	on inte Find F?	unit erml"	inte Defin webs 1	rval . e a	(H	lint: to two	what the ov be a tripod	happen ginn) space	s when	i we t Roca Such	ally the
4 Kri 5 (Chai fike W1	ove that Noge) Reca either a and W2	the un intervo are not	"triped 1-ma	wijolds a tripe orphic	are od,	spa for	is no instance do you	t "lo kinou	memorp rally loc	hic to k like aren4	on inte Find F?	unit innl two	inte Defin webs 1	rval. ∠ a	(H)	lint: to two	what the ov be a "tripod	happen Space	e fha	r loca	remo' ally the
4 Kri 5 ((hai Ke Ws	ove that llege) Rea either a and Wz	the un intervo are not	"tripsd	inifolds a tripe orphic	are are	spa for	is no nes tha instance do you	t "lo	memorp rally for they	hic to k like) aren4	on inte Find f?	unit mal tuo	inte Defin webs 1	rval . va, Wz	(H)	lint: two	what the ov be a "tripod	happen gin) points	s when	i we t f loca such	ally their
4 Kri 5 ((hai fike W1	ore that large) Rea either a and Wz	the un intervo are not	"tripsd	inifolds a tripe orphic	are od,	spa for	is no mes that instance do you	t ho	memorp rally for they they they	hic to k like aren4 aren4	on inte Find f?	unit innl two	inte Defin webs 1	rval . e a V _A , W _Z	(H	lint: two	what the ov be a Tripod	happen givn) points	s when	r loca	ally their