Reminder of last time:

 $\langle a, b, c | a = c^{-1}bc, b = a^{-1}ca, c = b^{-1}ab \rangle$

Topological spaces are the most general notion where "continuity" is defined.

14. The fundamental group of a space
Idea: take a space X and fix a point
$$x \in X$$
. Then
 $\Pi_1(X) = i$ paths on X starting and ending at x_0 , up to homotopy y
To illustrate this, take $X = R^2 \setminus i(1,1)$:
Path, homotopy: [Desmos]

So today we defined
$$\cdot \pi(K)$$
 for a link K
 $\cdot \pi_{2}(X)$ for a space X if the same?
Almost: given K , consider $\mathbb{R}^{3} \setminus K$:
Then $\pi(K) = \pi_{4}(\mathbb{R}^{3} \setminus K)$
But our definition didn't mention paths...
 $a=c^{*}bc$
 $b=a^{*}ca$
 $\longrightarrow \pi(trefort) = \langle a, b, c | a=c^{*}bc, b=a^{*}ca, c=b^{*}ab \rangle$

Enter the commutator:
$$[a, b] = aba^{-1}b^{-1}$$

 $a1a^{-1}1^{-1} = 1$

Picture:

The point: this approach generalizes:
Three pins:

$$\begin{bmatrix} a, b \end{bmatrix}, c \end{bmatrix} = \begin{bmatrix} a, b \end{bmatrix} c \begin{bmatrix} a, b \end{bmatrix}^{-1} c^{-1} = aba^{-1}b^{-1}c bab^{-1}a^{-1}c^{-1}$$

This works:

$$\begin{bmatrix} [1,b],c] = [1,c] = 1$$

$$\begin{bmatrix} [a,b],c] \xrightarrow{b=1} \begin{bmatrix} [a,1],c] = [1,c] = 1$$

$$\begin{bmatrix} [a,b],1] = 1$$

How this would look like:

... and back to links :

Brunnian link with 4 components

Poll then exercises