Reminder of last time:

There is a more general notion of π, which extends to:

Topological spaces ave the most general notion where "continuity" is defined.
a biased, not fully faithful geometric representation of mathematics arrows indicate how to take the quotient
by axel sarlin and innokentij zotov updated 2017-02-08 2:10

PDE
harmonic analysis
functional analysis
quantum physics
quantum
representation theory \dagger
$\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial s^{2}}+r S \frac{\partial V}{\partial S}-r V=0 . \quad$ finance maths
dynamical systems
analysis

*** the n-lab perspective on modern physics would end up in here somewhere
14. The fundamental gray of a space Idea: take a space X and fix a point $x_{0} \in X$. Then $\pi_{1}(X)=\left\{\right.$ paths on X staring and ending at x_{0}, up to homology $\}$

To illustrate this, take $X=\mathbb{R}^{2} \backslash\{(1,1)\}$:

Path, homitopy: [Desmos]

Obsenation: we can compos paths! \square
\ln fact, $\pi_{1}(\square)$ is a group!
Associativity easy, identity dement+ inverses: in the exercises.

Fact: let X be any topological space. Then $\pi_{A}(X)$ is a group, called the Fundamental group of X
(the beginning of algebraic topology)

So today we defined • $\pi(K)$ for a link K

- $\pi_{1}(X)$ for a space $X\{$ the same?

Almost: given K, consider $\mathbb{R}^{3} \backslash K$:

Then $\pi(K)=\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)$
But or definition didn't mention paths...

Or weird definition came from:
Generators:

Relations:

Exercises: explore $\pi_{1}(-+\square)$ and other fundamental groups
15. A party trick: Brunnian links

Q: How to make the picture fall? (Daw problem)
Explanation: Borromean link!

Q: How to generalize this trick?

$$
? ?
$$

A: Fundamental groups! Let's solve the 2 pin care first
Recall $\pi_{1}(\square)$

Now consider $\quad X=$ \square

We have two generators:

"Removing a pin" corresponds to adding a relation:

Similarly, removing the other pin gives $b=1$.
So were looking for a word $\neq 1$ in a, b such that:

- If we set $a=1$, the word simplifies to 1 .
- If we set $b=1$, the word simplifies to 1 .

Guesses?

Enter the commotator: $[a, b]=a b a^{-1} b^{-1} \quad a^{-1} 1 b 1^{-1} b^{-1}=1$
Pictore:

Upshot:

Remark: Same as
 , but flipped.

The point: this approach generalizes:

Three pins:

$$
[[a, b], c]=[a, b] c[a, b]^{-1} c^{-1}=a b a^{-1} b^{-1} c b a b^{-1} a^{-1} c^{-1}
$$

This works:

How this would look like:

... and back to links:

Brunnian link with 4 components

Poll then exercises

