14. The fundamental group of a space.
15. Consider again the space $X=$ $\square$
a) Identify the identity dement $1 \in \pi(x)$ (ie. a path sech that for any other path $\left.x, x_{0} 1=10 x=x\right)$ ) Conicter the path
 , and call it $a$. Denote by $a^{n}$ the concatenation of $a$ with itself $n$ times, and write $a^{0}=1$.
b) Express the following paths as powers of a:

c) What should the path
 be in terms of a?
d) Given any path $x \in X$, what should $x^{-1}$ be?
e) Convince yourehes that every element in $\Pi_{1}(X)$ is in fart a power of $a$.
16. let $X$ be the torus . Find too destine paths $a, b$ based at $*$ such that $a b=b a$.
17. (Challenge) Find a space $X$ such that $\pi_{1}(x) \cong C_{2}$.
18. Application: Brownian links
19. You have 2 pins, $A$ and B. Find a way to hang a picture subject to the following conditions 1. If you remove pin $A$, the picture falls. If you remove pin $B$, the picture stays up.
20. If you remove pin $A$, the picture stays up. If you remove pin $B$, the picture stays up.
21. If you remove pin $B$, the picture falls. If you remove pin $A$, the picture stays up.
22. Write your solutions from Exercise 1 in terms of the generators of $\pi_{1}(\square)$, where $a$ and $b$ are:


$\qquad$
23. Prove that the following identities hold in the free groups on the letters $a, b, c$.
24. $(a b)^{-1}=b^{-1} a^{-1} \quad$ (Hint: slow that the RHS is the unique element $x$ such that $(a b) x=1$ and $x(a b)=1$ )
25. $[a, b]=[a, b a]$
26. $[a, b][b, c]=\left[a b a^{-1}, c a^{-1}\right] \quad$ (Hint: $\left.\left(a b a^{-1}\right)^{-1}=a b^{-1} a^{-1}\right)$
27. Recall the solutions for the 2-pin and 3-pin problem: Find a solution to the 4 -pin problem, using commutators.

Can you generalize your solution?

5. (Challenge) Interpret the commutator as an OR statement, and use the 3-commatator from Exercise 4 . to solve the 2 out of 4 puzzle. You may use the Sage Math code in the second page to check that the picture does not fall when you only remove 1 pin.

## Sage code: (we https:///sagecell sagemath.org)



## Evaluate

True $\rightarrow$ So correctly, it gives True

