Grasp Axioms:

- Closure: for all $\begin{aligned} & x, y \in G \\ & x * y \in G\end{aligned}$

13. Group Theory
14. Decide whether the polling sets and operations form groups:
a) $(\mathbb{R},+)$
d) $([1, \infty), \cdot)$
b) $([-1,1],+)$
e) $(3 \overline{\overline{\bar{x}}}, \overline{\bar{x}}, ~>\ll 1, \cdot)$
c) $((0, \infty), \cdot)$
f) $\left(\left\{\overline{\overline{\bar{~}}}, \overline{\bar{\sum}}, \overline{\bar{x}}\right\}, \cdot\right)$

- Associativity: for all $x, y, z \in G$

$$
(x * y) * z=x *(y * t)
$$

- Identity dement: the is $e \in G$ s.t. ex $=x$ and $x e=x \quad$ oral $x \in G$.
- Inverses: for all $x \in G$ thee is $x^{-1} \in G$ st.
$x x^{-1}=e$ and $x^{-1} x=e$

2. Let $C_{2} \times C_{2}$ be the group with set $\left.h(0,0),(0,1),(1,0),(1,1)\right\}$ and operation given by addition modulo 2 , so for example $(1,0)+(1,1)=(2,1)=(0,1)$. Write down the operation table and prove that $C_{2} \times C_{2}$ is indeed a group.
3. Recall

with multiplication given by successive application of the maps, for instance

(Notice that we apply the transformations from right to left)
therefore $V * H=R$
Write down the operation table for Sym (凹). Do you see any similarities with that in 2? 4. a) Let $G=\left\langle a \mid a^{7}=1\right\rangle$. Find the 7 clements of G.
b) Let $G=\left\langle a, b \mid a^{3}=1, b^{2}=1, b a=a^{2} b\right\rangle$. Prove that $a b a b=1$, $(a b)^{-1}=b a^{2}$, and simply $b a^{2} b$.
c) Let $G=\left\langle a, b \mid a^{4}=1, b^{2}=1, b a=a^{3} b\right\rangle$. Find the 8 different elements in G.
4. How many clements does Sym (\triangle) have? (These are the symmetries of an equilateral triangle)

Find a presentation of Sym (\triangle) using 2 generators. You may check your answer using the following Sage cate:

G=F/rels
S=SymmetricGroup (3)
G.is_isomorphic(S)
(This returns false because the relations are coring)
(You may use G order () to find the number of elements of G)
6. (Harder): Find presentations for:
a) The group of symmetries of a regular polygon (2 generators)
b) The group of permutations of $1,2, \ldots, n$. ($n-1$ generators)
14. The knot group

1. Compote the following knot groups, using the given diagrams.
a) $\pi(\bigcirc)$
b) $\pi(\infty \infty \infty)$
c) $\pi(\infty)$
2. Consider link diagrams D_{1} and D_{2} which only differ in the region inside the dashed circles below Prove that both D_{1} and D_{2} will have equivalent relations:

3. (Challenge) Prose that $\Pi(L)$ is infinite for any link L.
4. (Challenge) Find two kinds K_{1}, K_{2} that are different but such that $\pi\left(K_{1}\right)=\pi\left(K_{2}\right)$.
