11. Algebraic Geometry

Differential Geometry
study spares given by "differatobse" equations
Algebraic Geometry
study spaces given by polynomial equations
Example: $y=e^{x} \quad / \sim$ differentiable

$$
y=x^{2}
$$

$$
e^{x^{2}}+e^{y^{2}}=5 \square
$$

$$
x^{2}+3 y^{2}=1
$$

Polynomials
Algebraic Geometry

$$
x^{2}+y^{2}-1
$$

Algebraic curves
Ulintion: An algebraic curve consists of a et of points in the plane satisfying a polynomial equation.

$$
C=\{(x, y): p(x, y)=0\}
$$

Examples:

- Line $C=\{(x, y): y-x=0\}=$
 $\lg 1$
- Circle $C=\left\{(x, y): x^{2}+y^{2}-1=0\right\}=$
 $\operatorname{cy} 2$
- Flower $C=\left\{(x, y):\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}=0\right\}=$

$\operatorname{dg} 6$
Degree of a curve: degree of the pallyomial

Question: can you find a polynomial $p(x, y)$ such that $C=\{(x, y)$: $p(x, y)=0\}$ is the following?

Irreducible curve: a curve that does not break up into the union of "simpler" curves.

Algebraic varieties
More generally, you can consider polynomials in more variables, e.g. 3, and their vanishing locus:

$$
V\left(x-y, \quad x^{2}+y^{2}+z^{2}-1\right)=\left\{(x, y, z): \begin{array}{l}
x-y=0 \tag{Geobebra}\\
x^{2}+y^{2}+z^{2}-1=0
\end{array}\right\}
$$

Dimensions: "Generically" we have
$V(f) \subset \mathbb{R}^{3}$ has dimension 2
$V(f, g) \subset \mathbb{R}^{3}$ has dimension 1
$V\left(f(g, h) \subset \mathbb{R}^{3}\right.$ has dimension 0 (set of pointer)
$V(f) \subset \mathbb{R}^{2}$ has dimension 1
$V(f, g) \subset \mathbb{R}^{2}$ has dimension 0 .
12. Singulanties of complex algebraic curves

Undesirable property:

An algebraic curve doesn't always look. like a curve!

$$
x^{2}+y^{2}=0
$$

Even worse: $\quad x^{2}+y^{2}+1=0$??
Solution: use complex numbers! A complex number is ore of the form $a+b i$ where $a, b \in \mathbb{R}$ and $i=\sqrt{-1}$.
Denote $\mathbb{C}=\{$ complex numbers $\}, \mathbb{C}^{2}=\{$ pairs of complex numbers $(x, y)\}$
Definition: A complex algebraic carve is a subset of \mathbb{C}^{2} of the form $C=\left\{(x, y) \in \mathbb{C}^{2}: P(x, y)=0\right\}$
Fact: Complex algebraic curves do boo like curves always!
Caveat: they ave harder to draw since \mathbb{C}^{2} is a 4D space \Rightarrow Draw "the real points"!

Singularities
Let P be a polynomial $P(x, y)=a_{00}+a_{10} x+a_{01} y+a_{11} x y+a_{12} x y^{2}+a_{21} x^{2} y+\ldots$
Define $\frac{\partial x^{a} y^{b}}{\partial x}=a x^{a-1} y^{b} \quad \frac{\partial x^{a} y^{b}}{\partial y}=b y^{b-1} x^{a}, \quad \frac{\partial \text { (con tart) }}{\partial x}=0=\frac{\partial \text { (content) }}{\partial y}$ and $\frac{\partial P}{\partial x}=\frac{\partial a_{00}}{\partial x}+\frac{\partial\left(a_{10} x\right)}{\partial x}+\frac{\partial a_{01} y}{\partial x}+a_{11} x y+a_{12} x y^{2}+a_{21} x^{2} y+\ldots$
Example: $P=2 x^{3} y^{2}+3 x^{7} y^{9} \Rightarrow \frac{\partial P}{\partial x}=6 x^{2} y^{2}+21 x^{6} y^{9}, \quad \frac{\partial P}{\partial y}=4 x^{3} y+27 x^{7} y^{8}$
Definition: A singularity of an algebraic curve is a point $\left(x_{0}, y_{0}\right)$ on $C=\{(x, y): P(x, y)=0\}$ such that $\frac{\partial P}{\partial x}\left(x_{0}, y_{0}\right)=0=\frac{\partial P}{\partial y}\left(x_{0}, y_{0}\right)$
Example: Take $C=\left\{(x, y): y^{2}-x^{3}+3 x-2=0\right\}$. Then to find its singlanties, we equate

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=0 \Rightarrow-3 x^{2}+3=0 \Rightarrow x^{2}=1 \sum_{x=-1}^{x=1} \\
& \frac{\partial P}{\partial y}=0 \Rightarrow \quad 2 y=0 \Rightarrow y=0
\end{aligned} \left\lvert\, \begin{array}{lll}
\left(x_{0}, y_{0}\right)=(1,0) & \text { on } C ? & 0^{2}-1^{3}+31-2=0 \\
\left(x_{0}, y_{0}\right)=(-1,0) & \text { on } C ? & y^{2}+1^{3}-3-2=-4 \text { No ! } \\
{[\text { Desmos }]}
\end{array}\right.
$$

A knot from a singularity

Take $C=\left\{y^{2}-x^{3}=0\right\}$
Singlanties: $\left\{\begin{array}{c}-3 x^{2}=0 \\ 2 y=0\end{array} \Rightarrow\left(x_{0}, y_{0}\right)=(0,0)\right.$ on $C /$
Now write $x=a+b i, \quad y=c+d i$ and substitute:

$$
\begin{aligned}
y^{2}-x^{3} & =(c+d i)^{2}-(a+b i)^{3} \\
& =c^{2}-d^{2}+2 c d i-a^{3}-3 a^{2} b i+3 a b^{2}+b^{3} i \\
& =0\left\{\begin{array}{l}
c^{2}-d^{2}-a^{3}+3 a b^{2}=0 \\
2 c d-3 a^{2} b+b^{3}=0
\end{array}\right\} \text { Th }
\end{aligned}
$$

This gives a souflace inside \mathbb{R}^{4}

Let's tale a slice of this surface near the singularity: let $S^{3}=\left\{a^{2}+b^{2}+c^{2}+d^{2}=1\right\}$
Intersecting the two vanities, we get

$$
U=\left\{\begin{array}{l}
c^{2}-d^{2}-a^{3}+3 a b^{2}=0 \\
2 c d-3 a^{2} b+b^{3}=0 \\
\frac{a^{2}+b^{2}+c^{2}+d^{2}=0}{s^{3}}
\end{array} \quad \text { dimension } 1\right.
$$

Recall that $S^{1}=\left\{x^{2}+y^{2}=1\right\}=\mathbb{R}+a$ point

$$
S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}=\mathbb{R}+a \text { point }
$$

$\leadsto S^{3}=\mathbb{R}^{3}+$ a point.
Ignore the point and view U inside \mathbb{R}^{3}. This is a knot!
\ln fact $c^{2}-d^{2}-a^{3}+3 a b^{2}=0$ defines a torus in \mathbb{R}^{3}
$2 c d-3 a^{2} b+b^{3}=0$ defines a different torus in $\mathbb{R}^{3} \quad$ [See animations]

