11. Algebraic geometry
12. Express the following subsets as algebraic corves in \mathbb{R}^{2}

13. Show how to factor the polynomial $x^{3}-x^{2} y+x y^{2}-y^{3}-x+y$ by examining the graph of the algebraic carve $V\left(x^{3}-x^{2} y+x y^{2}-y^{3}-x+y\right)$ on Desmos.
14. Find the intersection of the varieties $V\left((x-1)^{2}+y^{2}-1\right)$ and $V\left((x+1)^{2}+y^{2}-4\right)$. (Use Desmos to gain intuition, bot find the two points algebraically).
15. (Silly) What is $V(f, g)$ in terms of $V(f)$ and $V(g)$? What are the varieties $V(0)$ and $V(1)$?
16. Describe the following varieties in \mathbb{R}^{3}. Then check you answers with Geocrebra.
a) $V\left(x^{2}-y^{2}\right)$
b) $V\left(x^{2}+y^{2}\right)$
c) $V\left(x^{2}+y^{2}-z\right)$
d) $V(x z, y z)$
17. Is $\left\{(n, 0): n \in \mathbb{Z}\left\{\subset \mathbb{R}^{2}\right.\right.$ a variety? Why or why not?
18. An ideal is a subset IC\{polynomiads in $x, y\}$ which is chord under addition, subtraction and for any polynomial p and $f \in I, p f \in I$. The ideal generated by a set S is $(S)=\left\{p_{1} f_{1}+p_{2} f_{2}+\ldots+p_{c} f e: ~ p i ~ a r e ~ a r b i t r a n y ~ p l y n o m i a b s ~\right\} ~$

- Prove that (S) is an ideal - Prove that $\left.V\left(f_{1}, \ldots, f_{n}\right)=V\left(\left(f f_{1}, \ldots, f_{n}\right\}\right)\right)$

8. If V and W are varieties, prove the following. (Fell free to use 7.)
a) $V \cap W$ is a variety
b) VUW is a variety.
9. Singularities of complex algebraic cores
10. Simplify the following complex numbers. Feel free to double check in Sage

- $(1+i)^{2}$
- $3+2 i+i \cdot(5-2 i)$
- $(3+4 i)(3-4 i)$

1. Factor the following polynomials over \mathbb{C} :
a) $x^{2}+2 x+2$
b) $x^{4}-1$
c) $x^{2}+y^{2}$
2. Find the singularities of the following curves
a) $\left\{3 x^{2} y+2 x y=0\right\}$
b) $\left\{x y^{2}+x+y=0\right\}$
c) $\left\{x^{2}+y^{2}-1=0\right\}$
3. Recall that complex curves are 2-dimensional. Consider the complex line $x+y=1$.
a) Substrate $x=a+b i$ and $y=c+d i$, and find the equations that a, b, c, d must satisfy so that (x, y) lies in the complex curve.
b) Solve for d to obtain a single equation in a, b, c.
c) Use the Sage cock below to plot this surface in \mathbb{R}^{3}.

1	$\operatorname{var}(' x y z ')$
2	implicit_plot $3 d\left(x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2==4,(x,-3,3),(y,-3,3),(z,-3,3)\right)$

4. Repeat what you did in 3 for the complex curve $x^{2}+y^{2}=1$.
5. (Harder) Prove that the set in 4 is a surface that can be deformed into a cylinder.
