## Reminder of what weave dore sis far:

a biased, not fully faithful geometric representation of mathematics


Next two lases: we explore geometry

Topology
study spaces

- Distances don't matter:
- Study things like:
orentability, connectedness, holes.

Differential Geometry study spaces

- Distances matter

$\neq$
- Study things like: length, area, volume, angles curvature...

9. Hyperbolic Geometry


We first focus on 2D geometries. 2D space can be "curved locally" in three ways:

curvature $=0$


curvature $>0$


curvature < 0

[Watch Code Parade video]

We will work in hyperbolic space with a projection onto the disk.
Let's see what this means for the curvature $=0$ plane:


Disk model for the plane



Straight line $\sim$ Converges at infinity

Similarly, the plane with $\frac{\text { positive curvature }}{\text { "sphencal" }}$ has a disk model:



Straight line $\leadsto$ Converges inside the disk

Similarly, the plane with negative curvature has a disk model:
"Mypebblic"
Hyperbolic plane

$\leadsto$


Straight line as Converges outside the disk

First task: go over to NonEudlid to explore the hyperbolic plane (r ec Eexiseo)
10. Hyperbolic Knot Theory Recall we want


Consider the complement of a knot $K$ :


Call it $C_{K}$ for complement.

We say that $C_{K}$ is hyperbolic of "it can be made to look like $H^{3}$ locally"

Theorem (Thurston, 1978): All knots can be classified into:
$\left.\begin{array}{l}\text { - Torus knots } \\ \text { - Satellite knots }\end{array}\right\} \quad$ Contrived, "easy"

- Hyperbolic Knots (knots with $C_{L}$ hyperbolic) $\}$ Most knots!

Moreover, the hyperbolic structure, of it exists, it is unique.

How to build hyperbolic 20 spaces using ideal polygons:

Identify: "portal"


Hyperbolic torus minus a point.
A polygon is "ideal" of its vertices lie in the ideal boundary.

How to build hyperbolic 3D spaces using ideal polyhedia:


Hyperbolic 3D-space is constructed in a similar way to the 2D version: lines are given by circular ares.

Here we can identify opposite faces to form a closed 3D space.

The complement of the figure eight kant is hyperbolic.
Introduce 2D patches bounding the complement


There patches divide 3D-space into two:

(front and back).

So we can "fill in" 2 tetrakedra (front and back) with faces $N, S, E, W$ $N^{\prime}, S^{\prime}, E^{\prime}, W^{\prime}$
and identifications:


Finally, shrink the edges coming from the knot $(3,4,5,6)$ :


$$
\leadsto
$$



We finally obtain the complement of the knot as the "Dirichlet domain with patel":


Facets and edges are identfied accordingly.
Question: with these "portals" in place, how would this space look like from the inside?

Hyperbolic volume
Just like triangles in $\mathbb{H}^{2}$ have an area determined by their shape, tetrahedra in $\mathrm{H}^{3}$ have a volume determined by their shape (bat not so straight (orwarel). The maximum it can be is $-8 \int_{0}^{\frac{\pi}{4}} \log (2 \sin t) d t \approx 1.5911 \ldots$
Since the hyperbolic structure of $C_{K}$ is unique, its volume only depends on the wast. mo can use it to distinguish Knots.
Examples: - vol ( ()) ) $=-6 \int_{0}^{\frac{\pi}{3}} \log (2$ int $) d t \approx 2.02988 \ldots \leftarrow$ smallest possible
$\cdot \operatorname{vol}(\underset{\sim}{\wedge}))=4.40083 \ldots$

have the same volume


