9. Hyperbolic Geometry

These exercises mut be carried oft using NonEudid (link on the website). Do as many as you can. For each exercise, select "Clear All" under "Select Measurement or Modification"

1. Lines
(a) Two lines are parallel if they dint intersect inside the disk. Construct three lines (using "Lime") Call them l_{1}, l_{2}, l_{3}. They mort satisfy:

- l_{1}, l_{2} intersect at a single pint.
- l_{3} is parallel to both l_{1} and l_{2}.
(b) Construct two lines (using "Line"). Construct their intersection point (using "Intersection point" and its instructions.)

Next, measure the 4 angles at the point of intersection (see the instructions under "Mauve angle") Finally, move the points you used to define the fines in order to make the 4 angles 90°.
2. Perpendicular bisector.
(a) Draw a line segment, with endpoints A and B.
(b) Draw a circle with center A and passing through B.

Draw a circle with center B and passing through A.
(c) Draw a line through the intersection points of the 2 circles.
(d) Check that the line and segment are perpendicular (measure the angle).
(More exercises on the next page).
3. Triangles
(a) Construct a triangle (using line segment) with angles adding up to 100°.

Then one with angles adding up to <os.
(b) Construct a triangle and draw perpendicular bisectors to each side (Feel free to hide the auxiliary circles). By moving the points around, convince yourselves that the three bisectors intersect in a single point. Finally find the circle that passes through the vertices of the triangle.
(c) Construct a triangle $\widehat{A B C}$. Chose a point D on the segment $B C$. Finally measure the triangles ("Measure triangles") $\widehat{A B C}, \widehat{A B D}, \widehat{A D C}$. Let $A\left(\right.$ triangle) $=180^{\circ}$-angl sum. Check that $A(\widehat{A B C})=A(\widehat{A B D})+A(\widehat{A D C})$. Call A the "area" of the triangle.
4. Areas
(a) Draw two triangles with equal side lengths (in different parts of the disk). Check that their angles are equal. Is this true in Euclidean geometry?
(b) Draw two triangles with equal angles (in different pants of the disk). (heck that their side lengths are equal. Is this true in Eudidean geometry?
(c) Conclude from this and 3.c) that the notion of area we defined is reasonable.
5. (Harder) Towards differential geometry.

Consider the unit disk $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ divided into annular regions R_{0}, \ldots, R_{N-1}
 each of width $\frac{1}{N}$.
Define the norm $\|(x, y)\|=\sqrt{x^{2}+y^{2}}$. Define a distance on each R_{k} given by $d(p, q)=\frac{\|p-q\|}{1-\left(\frac{k}{N}\right)^{2}}$. SKetch what you imagine is the shortest path between P and Q. Do the same for P and M. How wald you formalize this setup "as $N \rightarrow \infty$ ". For instance, how would you compute the length of a path?
10. Hyperbolic knot Theory

1. Go or to Hyperrogue to experience the hyperbolic plane "from a local prospective".
2. Go over to Hypernom to experience hyperbolic 3D space "from a local perspective". (Ore the arrow keys + WASD)
3. Open Snappy (install it if you havent yet) and input: $M=M a n i f d d$ () The link editor will pop up. Draw any link and dick on Tools $>$ Send to Snap ll. Verify that your link is hyperbolic by computing its volume via M. volume(). (If it isn't, it will return 0). Then explore the hyperbolic geometry of the complement of your link using

- M. dirichlet_domain(). view)
- M. inside-view() (Use the arrowkeys + wasp)

