## Reminder :

• Knots and Links:



- Surfaces Surfaces bdary components b = 6
- Euler characteristic :

  - 2. X= V-E+F
- $\chi(T_{g,b}) = 2 2g 5$



Any ideas?

Are there two (proper) knots 
$$K_1$$
,  $K_2$  such that  
 $K_1 \# K_2 = un Knot?$ 

## Our tool will come from the topology of surfaces















Examples:  
• Unknot: 
$$= = = T_{0,L} = 0$$
 is obviously minimum.  
• Trefoil:  $= T_{1,1} = 0 = T_{1,1} = 0$  g(trefoil)  $\leq 1$ .  
Observation: If g(K) = 0, then  $K = unknot$ . Proof: g(K) = 0 means that  
K is the boundary of  $T_{0,L} = 0$ . But  $= 1$  is clearly unknot teel.

(onsequence: g(trefoil) = 1.

Rink: Sage gives the genus of a link: L.genus() First task: Euler characteristic of Seilert surfaces.

•



Crucial Theorem: 
$$g(K_1 \neq K_2) = g(K_1) + g(K_2)$$
  
Corollary: Every knot can be written as a sour of prime knots.  
Proof: Let K be a knot. If  $g(K) = 1$ , then K is prime (you prove this in the exercises)  
This proves the claim for Knots of genus  $1$ .  
If  $g(K) = 2$ , then either  $K = K_1 \# K_2$  for  $K_1, K_2 \neq$  unknot, in which  $\cos g(K_1) = g(K_2) = 3$   
and each of  $K_1, K_2$  are prime. Otherwise K itself is prime.  
This proves the claim for knots of genus 2.  
If  $g(K) = 3$ , then either  $K = K_1 \# K_2$  for  $K_1, K_2 \neq$  unknot, in which  $\cos g(K_1), g(K_2) \leq 2$   
and each of  $K_1, K_2$  are prime. Otherwise K itself is prime.  
This proves the claim for knots of genus 2.  
If  $g(K) = 3$ , then either  $K = K_1 \# K_2$  for  $K_1, K_2 \neq$  unknot, in which  $\cos g(K_1), g(K_2) \leq 2$   
and each of  $K_1, K_2$  are prime. Otherwise K itself is prime.  
This is roulled a proof by induction.  
This is roulled a proof by induction.  
Reprivark: Senfert surfaces can be used to show uniqueness.

Proof of the crucial theorem Warning: this is a step harder than what we've done so far, it's supposed to give you a taste! Definition: Let S be a surface with a disk D bounding a circle in S. Then "performing surgery along D" is the action of replacing S by a surface S' where we cut the surface S at the circle and cap of the remaining "tubes". Lemma: If performing surgery on a surface S results in a connected surface S', then g(S') = g(S) - 1. Proof of the lemma: Take a triangulation for S s.t. the dick is one of the triangles. Then after surgery: V~~ V+3, E~~ E+3, F~~ F+2 So X~~ X+2 But X=2-2g so g~~g-2. 1 Proof of the theorem: It suffices to show  $g(K_n \# K_2) \ge g(K_n) + g(K_2)$ . Take a Serfert surface S for K1#K2 of minimal genus:

63



This procedure removes innermost circles one at a time, so eventually we get a surface 
$$\tilde{S}$$
 whose intersection with B is just  
Next, notice that  $\tilde{S} = \bigoplus_{\substack{K_1 \\ K_2}} g^{kd}$  to  $\bigcup_{\substack{K_2 \\ K_3}} g^{kd}$  to  $\bigcup_{\substack{K_1 \\ K_2}} g^{(K,\#K_2)} = g(\tilde{S}) = g(\tilde{S}_1) + g(\tilde{S}_2) \ge g(K_1) + g(K_2)$  as clesired.

Your second task: Investigate the genus of Knots Prove the infinitude of prime knots.