Reminder:

- Knots and links

- Surfaces

\leadsto genus $g=2$
\leadsto \# bdary components $b=6$
- Euler characteristic

1. Find a triangulation

2. $\chi=V-E+F$

- $x\left(T_{g, b}\right)=2-2 g-b$

New Question: Can you untie a knot by knotting it more?

Any ideas?

Mathematical formulation:

Define

Ave there two (proper) knots K_{1}, K_{2} such that

$$
K_{1} \# K_{2}=\text { unKnot? }
$$

Our tool will come from the topology of surfaces
a biased, not fully faithful geometric representation of mathematics arrows indicate how to take the quotient

7. Seifert sorfaces

Back to our goal:

Idea (1930s): [Animation]

Question:

\leadsto ? ? m

1934, Seifert:
:"Here is an alhorithm"

How does it work?
Step 1: Choose a diagram and onentation for the link:

Step 2: smooth out every crossing: \mathbb{T} and become \sum (

Step 3: make every resultant circle into a disk, and place the disks at different heights

~~s

Step 4: place twisted bands where there used to be crossings:

. . .

Resort:

Remark: the result is days orientable.
Definition: a surface whose boundary components form a link L is called
a Seijert souflace.
Example: the Seifert algorithm gives a Seifert surface
Warning: These are not unique!

The theory of surfaces gives us a new invariant:

0

1

Definition: the genus of a link $g(L)$ is the minimum genus of a Seifert surface for L.
[Seyfert surfaces software]

Examples:

- Unknot: $\square=\square=T_{0,1} \quad 0$ is ibriastly minimum.
- Trefoil: $\because \sim=T_{1,1}$ so $g($ trefoil $) \leqslant 1$.

Observation: $f(g)=0$, then $K=u n k n o t . ~ P r o o f: ~ g(K)=0$ means that K is the boundary of $T_{0,1}=\square$. Bot Ω is clearly unknotted.

Consequence: $g($ trefoil $)=1$.
Rum: Sage gives the genus of a link: L.genus ()
First task: Ever characteristic of Select surfaces.
8. Applications: no-untying and knot primality

Recall ar original question:
Can 1 untie a knot by knotting it more?
(rucial Theorem: $g\left(K_{1} \# K_{2}\right)=g\left(K_{1}\right)+g\left(K_{2}\right)$

Conollam: If K_{1} and K_{2} are k_{n} ts but $K_{1}, K_{2} \neq$ unknot, then $K_{1} \# K_{2} \neq$ unknot.

$$
\text { Proof: } \begin{aligned}
K_{1} \neq O & \Rightarrow g\left(K_{1}\right) \geqslant 1 . \\
& K_{2} \neq O
\end{aligned}
$$

Therepre $g\left(K_{1} \# K_{2}\right)=\overline{\text { Them }_{m}} g\left(K_{1}\right)+g\left(K_{2}\right) \geqslant 2>0=g(O)$ i

Definition: A Knot K is prime of whenever $K=K_{1} \nexists K_{2}$, then either $K_{1}=$ unknot or $K_{2}=$ unlenot.
Examples: $\int \neq K_{1} \# K_{2}$ prime

$$
\Omega=\Omega \text { not prime }
$$

table of Prime knots up to 8 crossings

Rue: Sage has the prime knots stored up to ~ 14 crossings.

No one has classified the primes with $\geqslant 17$ crossings.

Crucial Theorem: $g\left(K_{1} \# K_{2}\right)=g\left(K_{1}\right)+g\left(K_{2}\right)$ Corollary: Every knot can be written as a som of prime knots.

Proof: Let K be a knot. If $g(K)=1$, then K is pine (you prove this in the exercises) This proves the claim for knots of genus 1 .
If $g(K)=2$, then either $K=K_{1} \neq K_{2}$ for $K_{1}, K_{2} \neq$ in knot, in which car $g\left(K_{1}\right)=g\left(K_{2}\right)=1$ and each of K_{1}, K_{2} are prime. Otherwise K itself is prime. by the theorem This proves the claim for knots of genus 2 .
If $g(K)=3$, then either $K=K_{1} \# K_{2}$ for $K_{1}, K_{2} \neq$ unknot, in which car $g\left(K_{1}\right), g\left(K_{2}\right) \leqslant 2$ and each of K_{1}, K_{2} ak e prime. Otherwise K itself is prime.

This is called a proof by induction".
Remark: Serfert surfaces can be used to show uniqueness.

Proof of the crucial theorem
Warning: this is a step harder than what we've done so far, it's supposed to give you a taste!
Definition: Let S be a surface with a disk D bounding a circle in S. Then "performing surgery along D " is the action of replacing S by a surface S^{\prime} where we cot the surface S at the circle and cap of the remaining "tubes":

Lemma: If performing surgery on a surface S results in a connected surface S^{\prime}, then $g\left(S^{\prime}\right)=g(S)-1$. Proof of the lemma: Take a triangulation for S sit. the dak is one of the triangles. Then after surgery: $V \leadsto V+3, E \leadsto E+3, F \leadsto F+2$. So $x \leadsto x+2$. But $x=2-2 g$ so $g \leadsto g-1$. 口

Proof of the theorem: H suffices to show $g\left(K_{1} \# K_{2}\right) \geqslant g\left(K_{1}\right)+g\left(K_{2}\right)$.
Take a Serpent surface S for $K_{1} \# K_{2}$ of minimal genus:

Next, take a sphere that separates the two summed Knots:

The intersection between B and S consists of:

Take an innermost circk. Then perform surgery along it:

The resulting surface is a Seifert surface for $K_{1} \# K_{2}$. If it is connected, then by the Lemma, its genus is lower than $g(S)$, impossible. It follows that it is disconnected and therefore only one of the components bounds $K_{1} \not K_{2}$, and we can remove the other one.

This procedure removes innermost circles one at a time, so eventually we get a surface \tilde{S} whore intersection with B is just

Next, notice that $\tilde{S}=$

Now $g\left(K_{1} \# K_{2}\right)=g(\tilde{S})=g\left(\tilde{S}_{1}\right)+g\left(\tilde{S}_{2}\right) \geqslant g\left(K_{1}\right)+g\left(K_{2}\right)$ as clesired.

Your second task: Investigate the genus of Knots

- Prove the infinitude of prime knots.

