Reminder:

- Knots and links:

- Showing they're equal: Reidemeister moves

$$
\text { RI: } 2 \rightarrow \cap \text { RIT: }(1 \rightarrow|\mid \text { RIT }: Y \rightarrow 1 \times
$$

- Showing theyire different: invariants

$$
\longrightarrow n \text {-colorability } \sum_{c_{\text {under }}}^{\text {Cinder }} c_{\text {over }} 2 c_{\text {over }} \equiv c_{\text {under }}+c_{\text {under }}(\bmod n)
$$

Today: higher dimensions

Today we well innestigate
a biased, not fully faithful geometric representation of mathematics

5. The topology of surfaces

We will associate

Defnition: a surface without boundary is a subset of 3D space such that arand every point there is a "disk": a copy of $B^{2}=\left\{x^{2}+y^{2} \leqslant 1\right\}=$

Examples:

Nonexamples:

"Local condition"

Definition: a surface with boundary is the space obtained by removing one or more disks from a surface withat boundary

Examples:

Warning: we will not consider non-orientable surfaces, that is, surfaces that cannot be painted with two colors:

Fart: a surface is determined by
number of "donut holes" gerus number of removed discs \#boundary componats b

Example:

is the surface with genus $g=2$ and \#bdary components $b=6$
Technical remark: just like with knots, we may stretch surfaces without tearing them apart - this does not change the surface.

The Euler characteristic of a surface Surface $m>$ "Inflated" Polyhedron \leadsto Polyhedron (aka polygon mesh)

or

Surface

\leadsto Polyhedron
(aka polygon mesh)

Q?

The Euler characteristic of a surface S is

$$
\chi(S)=V-E+F
$$

for any deflated polyhedron for S with

$$
\begin{aligned}
& V=\text { \#vertices } \\
& E=\text { \#edges } \\
& F=\# \text { faces }
\end{aligned}
$$

Theorem (Legendre, 1700s): the Euler characteristic is independent of the choice of polyhedron.

Your first task today: Conjecture and prove a formula for $\chi\left(T_{g, b}\right)$
6. Topology in higher dimensions: movies

Fundamental idea in mathematics: Generalize

So far: A knot is a "circle" inside $\mathbb{R}^{3}=\{(x, y, z)\}$

One step up: $\quad a$ "sphere" inside $\mathbb{R}^{4}=\{(x, y, z, t)\} \quad$??

Problem: How do you even draw this? How can 1 picture 4 dimensions?

One possibaty: represent the 4 th variable as time.

To see how this would work, let us represent a 2D surface as a "movie"
Spatial representation:

Movie representation:

Now the following movie is a representation of the 3 -sphere in \mathbb{R}^{4} :

Question: why not study 1-dimensional knots in \mathbb{R}^{4} ?
Answer: They all untangle!
To see this, place the knot in \mathbb{R}^{4} and bring the whole thing to $t=0$.

Now, move the undenstrand slightly into $t=1$

Finally, bring back the strand so that it becomes the undercrossing:

This is the unknot!

A recent development on slice knots
A "Knot movie" represents a disk in \mathbb{R}^{4} if and only if the possible move mores are

or

yeatsand
$\sqrt{37}$, or Redemeider moves.

A knot is called "slice" if it can be dotained as one of the frames in such a movie. Example:

Topologically slice knot
Smoothly slice knot (more restrictive)
Ot of the thousands of knots with $\leqslant 12$ crossings, mathematicians showed that topologically slice \longleftrightarrow smoothly slice
for all but one knot, Conway's knot:

Lisa Picirillo (2020):

Theorem: The Conway knot is not smoothly slice.
(The proof uses a sophisticated invariant called Rasmussen's s-invariant).

