Reminder

· Showing they're equal: Reidemeister moves

Today we will investigate

a biased, not fully faithful geometric representation of mathematics arrows indicate how to take the quotient $\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$ finance maths by axel sarlin and innokentij zotov measure-theoretic PDE ergodic theory probability theory updated 2017-02-08 21:10 harmonic analysis dynamical systems measure theory analysis quantum physics functional analysis geometric measure theory complex analysis symplectic quantum $\int \omega = \int d\omega$ riemannian geometry information theory lie theory geometry differential geometry ** differential topology representation theory † alg. and top. K-theory top. graph theory commutative algebra topology homological algebra knot theory non-commutative algebraic geometry computational algebra -w-dimensional topology algebra and geometry algebraic topolarithmetic and algebra diophantine geometry tropical geometry nomotopy theory algebraic number theory group theory Cherory theory 1 *** topos theory homotopy type theory * the gray shape is supposed to algebraic combinatorics cryptography loosely represent various logic aspects of geometry $(A = B) \simeq (A \simeq B)$ combinatorics model theory discrete maths proof theory decision theory ** many physical subjects, such as computational maths gauge theory, 4-manifolds and computability theory discrete probability relativity could be placed around theory graph theory here set theory *** the n-lab perspective on modern physics would end up in here somewhere

Q?

The Euler characteristic of a surface S is

$$\chi(S) = V - E + F$$

for any deflated polyhedron for S with
 $V = \#$ vertices
 $E = \#$ edges
 $F = \#$ edges
 $F = \#$ faces
Theorem (Legendre, 1700s): the Euler characteristic is independent of
the choice of polyhedron.
for first task today: Conjecture and prove a formula for $\chi(T_{3,6})$

Q? Exercises

6. Topology in higher climensions: movies Fundamental idea in mathematics: <u>Generalize</u> So far: A knot is a "circle" inside $\mathbb{R}^3 = \frac{1}{2} (x, y, z) \frac{1}{2}$ One step up: a "sphere" inside $\mathbb{R}^4 = \frac{1}{2} (x, y, z, t) \frac{1}{2}$?

Problem: How do you even draw this? How can I picture 4 dimensions?

One possibility: represent the 4th variable as time.

To see how this would work, let us represent a 2D surface as a "movie"

Spatial representation:

Movie representation:

Two ways to do this
Two ways to do this
Two ways to do this
Smoothly slice knot (nore restrictive)
Out of the thousands of knots with
$$\leq 12$$
 crossings, mathematicians showed that
topologically slice \leftarrow smoothly elice
for all but one knot, Conway's knot:
Topologically slice \leftarrow smoothly elice
Topologically slice \leftarrow smoothly elice

Lisa Piccirillo (2020):

Theorem: The Conway Knot is not smoothly elice. (The proof uses a sophisticated invariant called Rasmusson's s-invariant).