5. The topology of surfaces
6. Reconstruct the deflated polyhedron for the sphere that uses 6 vertices. Count the number of edges and vertices in the deflated polyhedra for the surfaces below:
7.

2.

3.

Notice a pattern in the Euler characteristics and conjecture a relation between $\chi(S)$ and $\chi\left(S^{\prime}\right)$, where S is any surface and S^{\prime} is S minos a disk. Convince yourselves that your result is always true.
2. Define the connected sum of two surfaces as follows: remove a disk from each and glue them along the bandary:

1 Prove that $T_{i, 0} \# T_{j, 0}=T_{i, j, 0}$ for any $i, j \geqslant 0$
2. Prov that given two surfaces S_{1} and $S_{2}, \chi\left(S_{1} \# S_{2}\right)=\chi\left(S_{1}\right)+\chi\left(S_{2}\right)-2$.
(Hint: remove a triangle from each associated polyhedron)
3. Use 1 and 2 to give a formula for $X\left(T_{g, 0}\right)$ in terms of $g \geqslant 0$.
(You may use the fact that $\chi\left(T_{1,0}\right)=0$)
3. Combine your results from 1 and 2 togie a formula for $\chi\left(T_{g, b}\right)$ in terms of g and b.
4. (Optional, hard) Find a surface without boundary, not necessarily "embedded" in \mathbb{R}^{3} and with Ever characteristic 1
6. Topology in higher dimensions

1. If a sphere is the analog of a circle one dimension up, what's the analog of a circle one dimension down?
2. Draw the 2D-movie for the dabble torus
3. Show that the following knot is slice

Reminder:

4. Explain why a 2 -sphere in \mathbb{R}^{4} dos not separate \mathbb{R}^{4} into two regions like it does in \mathbb{R}^{3}. Describe a manifold that does.
5. (Harder) Can you find examples of 3-manfolds that are not the 3 -sphere?

