Reminder of last time

- We defined knots and links

- We saw dementary tranformations to manipulate link diagrams
- We saw how to input links into Sage

3. Combinatorics and ar first invariant

Question: Which of the following links are you able to tell apart?

Idea:

Now

\}
?

Today: a combinatorial invariant

a biased, not fully faithful geometric representation of mathematics

arrows indicate how to take the quotient
by axel sarlin and innokentij zotov updated 2017-02-08 21:10

ergodic theory	
dynamical systems	
analysis	

measure theory

differential topology
homological algebra

top. graph theory

But... what is combinatorics?
The mathematics of counting
Example
Count in how many ways the edges of the following graph can be colored so that

- We use $\leqslant 2$ color
- two adjacent elygs cannot have the same color
\square

Poll.

1. How many 3-colorings does

2. How many 3-clonings does

Colorings in math

- Ramsey theory

- 4-color theorem

Back to Knots
Definition: A link diagram is 3-colorable iff it is passible to assign colors to it edges so that:
a) At each crossing, either one or three colors are seed:

valid valid not valid
b) Only using one color everywhere is not allowed

Examples

Nonexample:

Question: if I have two link diagrams for the same knot, can one be 3-cobrable bet not the otter one? Egg. $\infty, 0$

Theorem: tricolorability is a link invariant.
(If L is a link and D_{1}, D_{2} are diagrams for it, then D_{1} is tricclomble $\Leftrightarrow D_{2}$ is tricclomable)
Proof: A) - Suppose D_{1} is 3 -colorable

- Reidemeister moves $D_{1} \xrightarrow{\text { R? }} D_{1}^{\prime} \rightarrow \ldots \rightarrow D_{2}$
- Coloring for $D_{1}{ }^{\prime}$:

$$
\rightarrow R I: \bigcap \mapsto \bigcap
$$

$\underset{\substack{\text { condor } \\ \rightarrow \text { Ray })}}{\text { RIT }} \quad \gamma \rightarrow \|$
$L_{\text {VIII }}$

- Repeat for $D_{1}{ }^{\prime \prime}, D_{1}^{\prime \prime \prime}, \ldots, D_{2} \Rightarrow D_{2}$ is tricolorable
B) - Suppose D_{1} is not tricolorable. Then if D_{2} is tricolorable then D_{1} is, a contradiction.
$\Rightarrow D_{2}$ is not tricalorable.
Q, Instal Snap Ply

4. Modular arithmetic and n-colorability

Arithmetic mosul n
"Clock anthmetric". Fix an integer $n \geqslant 1$.
Definition: Two integers a, b are conguvent modulo n if they have the same remainder when divided by n. We write $a \equiv b(\bmod n)$
Examples: 17 divided by 12 gives a remainder of 5

$$
\begin{aligned}
& \Rightarrow \quad 17 \equiv 5(\bmod 12) \\
& 25=12 \cdot 2+1 \\
& 13=12 \cdot 1+1 \\
& \Rightarrow 25 \equiv 13 \equiv 1(\bmod 12)
\end{aligned}
$$

Abs negative: $-1=12 \cdot(-1)+11$

$$
\Rightarrow-1 \equiv 11 \quad(\bmod 12)
$$

We can do anthmetic modulo n :
Take $n=7$.

$$
\begin{aligned}
& 5+4=9 \equiv 2(\bmod 7) \\
& 3-5=-2 \equiv 5(\bmod 7) \\
& 2 \cdot 4=8 \equiv 1 \quad(\bmod 7)
\end{aligned}
$$

Note: 2 and 4 are multiplicative inverses modulo 7.
n-colorability
Definition: let $n \geqslant 1$.
A link diagram L is n-colorable if we can assign a remainder in $\{0,1, \ldots, n-2, n-1\}$ so that:

- At each crossing

$$
2 c_{\text {over }} \equiv c_{\text {inner }}^{\prime}+c_{\text {under }}(\bmod n)
$$

- More than one color is used.

Remark: This definition coincides with 3-colorability for $n=3$:

$$
\begin{aligned}
& 2 C_{\text {over }} \equiv C_{\text {under }}+C_{\text {under }} \\
& \quad C_{\text {under }} \equiv c_{\text {under }} \equiv 0 \quad C_{\text {over }} \equiv 1 \Rightarrow \quad C_{\text {under }} \equiv C_{\text {under }} \equiv 1 \quad c_{\text {inter }} \equiv 2 \Rightarrow \quad c_{\text {index }} \equiv c_{\text {under }} \equiv 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \\
& \text { or } \\
& \text { or } \\
& \text { Cinder } \equiv 0 \quad G_{\text {under }} \equiv 2 \\
& C_{\text {under }} \equiv 0 \quad G_{\text {under }} \equiv 1
\end{aligned}
$$

Theorem: n-colorability is a link invariant
Proof: we will show invariance under the Reidemeinter moves

$$
L R I: \bigcap^{a} \mapsto \bigcap^{a}
$$

Q? Snap Ry

