Note: If an exercise has a circle around it: If your grap's name is a number, steve a)

- If your grep's name is a letter, sdi b)
- You will solve c) together with the other group.

3. Combinatonics and our first invariant
(1.) a) How many ways ave there to color the edges of the graph
 with the cobs 0 and 1 , so that no two edges of the same color are adjacent?
b) How many ways ave there to color the edges of the graph with the cobs 0 and 1 , so that no two edges of the same color are adjacent?
c) Convince yorrebies that a graph containing a polygon with an odd number of sides is not colorable wing 2 colors.
(2.) Determine whether the following links are 3-culbrable
a)

b)

c)

4. Find a map (a partion of a rectangle into regions) that is 4 -colorable bot not 3-cobacable.
5. Is it possible for a group of 5 people to satifify property P ?

Property P: no group of 3 people are all friends, and in every group of 3 people at feat two of them are friends.
5. (Hard) Define a notion of 4-cobrability for links and show that it is a link imariant.
4. Modular arithmetic and n-colorability

1. Reduce the following numbers modulo n :

- $2+3.5(\bmod 11)$
- $2^{10}+6 \cdot 9^{10}(\bmod 7)$
- $7^{4}(\bmod 8)$
- $a^{5}-a(\bmod 5)$ for $a=0,1,2,-1,-2$.

2. Determine whether the following links are 3-cobrable and br 5-colorable

Use this to pore that no two of them are isotopic.
3. Input the links in exercise 2 into Sage by using SnapPy in order to obtain their PD codes. Then use the commands. is_cobrable(3), is_colorable (s) to dabble-check year answers to 2.

Reminder:
4. Define the commented sum of two knots as follows.

Prove that of K_{1} is p-colorable and K_{2} is q-cobrable then $K_{1} \# K_{2}$ is both p-and q-colorable.
5. (Hard) A knot is called invisible if it is not p-colorable for any prime p. Can you find any invisible knots? Can you find infinitely many?

