$$
\frac{\text { Intro to Abstract Math (via Knots) }}{\text { SHP Spring } 2022}
$$

Instructor: Alvaro Martinez (he/him)

Place pill out te form!

$$
\ln t r o+Q
$$

What is a knot?

1. Take astring
2. Knot it however you want.
3. Fuse the eds together.

Example:

Mathenticial urisisity?

- In elatromignetism

- In mithematis:
all posiver "3D-spaces" cank controcted for konts

A 3 -maldd in the maxry.

- In quantion phaysics

Fractiond quantion thll efect

- In bidogy

Knotted DNA strands

s

The knottedness of proteins afects their functions.

Good news: no need to know any of those things to do uncut theory!

Goals of the course:

1. Understand knots from a mathematical point of view. When are two links "the same"? How can I tell two links apart?
2. Explore connections with other fields in math (and use knot theory as an excuse to export them)
3. Learn how to use software to do math
4. Get a feel for what math research is like.

Mop of pure mathematics:

a biased, not fully faithful geometric representation of mathematics

Connections to knit theory:

a biased, not fully faithful geometric representation of mathematics

0 . The unknot

https://miro.medium.com/max/600/1*z8xAu-m3jzDqfxjrgohjnw.gif

Definition (link diagram): a projection of a link onto the plane so that we can tell under/avercrossings.
Examples:

Poll: is this a link diagram for the unknot?

Poll: which of these can be maniplated into tropols?

b.

C
d.

http://sites.oglethorpe.edu/knottheory/wanted/

1. Reidemeister moves
$R I: ? \rightarrow \Omega$ Example: $\sigma=\frac{(}{\infty}$

KI: \rightarrow

RIII:

Theorem (Reidemeister): two link diagrams represent the same knot if and orly of they are related by Reiemenister mores.

Theorem: RI': $=\lambda \hookleftarrow \bigcap$ follows from $R I, R I I, R I I$.
Proof: $\cap \stackrel{\text { RI }}{=} \xlongequal{\text { RIT }} \bigcap_{\square}$

Theorem: RIII: $=$
Proof:

2. Knot theory for computers

Need to translate

- Step 1: break up the link into edges, and label them $1, \ldots, n$ following the orientation:

- Step 2: at each crossing, record the four numbers according to the following rub:

Result: $\quad[(1,5,2,4),(5,3,6,2),(3,1,4,6)]$

How to get back the link?
Step 1: Draw a crossing for each group of 4, according to the rule:

$$
\begin{aligned}
& {[(1,5,2,4),(5,3,6,2),(3,1,4,6)]} \\
& \left.H_{1}^{4}\right|_{5} ^{2}-\left.\right|_{5} ^{6}+\left.\right|_{3} ^{4}
\end{aligned}
$$

Step 2: Match the edges:

Task 0:. Click Run (or press Shift +Enter):
Task 1:

- Start a new cell
- Import Snap ll:
-Write down the Planar Diagram code:

$$
2 P D=[(1,5,2,4),(5,3,6,2),(3,1,4,6)]
$$

- Define a Snappy link:

$$
3 \text { L_snappy }=\text { snappy.Link(PD) }
$$

- Make it a Sage link:

4 L=L_snappy.sage_link()

- Plot it:

5 L.piot()

Install Snap Dy

