0-1: The unknot and Reidemeister moves.
(0.) Find:
a) A link diagram for the unknot with n crossings, for any $n \geqslant 1$.
b) A link diagram with n components and $2(n-1)$ crossings. (The link most be competed, egg. (C) dosn't cont)
c) A link with three components such that removing any one component yields two separate unknots: \bigcirc
(1.) Simplify the following diagrams until obtaining the unknot, indicating each Reidemeister more.
a)

b)

c)

2. You're handed a link diagram for a knot (1 connected component). You know it only has are crossing. Does the knot have to be the unknot? What of it has 2 crossings? What if it has 3?
3. (Optional) Classify links with 2 components which have a diagram with 2 crossings.
2. Knot theory for computers
(1.) Write down the PD code for the following link diagrams:
a)

b)

c)

Hint: recall the procedure was:

- Step 1
- Step $2:$

Break into pieces: Decode using the rule:

$$
\leadsto[(1,5,2,4),(5,3,6,2),(3,1,4,6)]
$$

2. Draw the link diagrams associated to the following PD codes:
a) $[(1,2,2,1)]$
b) $[(1,1,2,2)]$
c) $[(4,2,3,1),(1,3,2,4)]$
d) $[(3,1,4,2),(4,1,3,2)]$

$$
[(1,5,2,4),(5,3,6,2),(3,1,4,6)]
$$

Recall: - Step 1: draw the crossings you need, anywhere you like:

- Step 2: match the edges accordingly

3. Plot the links you obtained in 1 and 2 in Sage.
4. Obtain PD codes for the following link diagrams using SnapPy. Then pot them in Sage.
a)

b)

