- Logistics (Name, Maithreya, 10 minute break 10.10-10.20)
- History of algebra (in the sene of salving for unknowns)
- Rethorical algebra
- Egypt. Rind papyrus (1550 BC$) \quad x+\frac{x}{4}=15$ The thing together with the forth part of the thing is $f 1$ steen. Then substitute $x=5$.
- India. Brahmagupta and co (600-700 AD) 0, negative numbers
gives formuck for quadratic equation
- Al-Khwarizmi (820 AD) soles quadratic equation by rethorical alforaic manipulations introduces Europeans to alplora
- Symbolic algebra
- Viète (1590), Descartes (1000s): current symbolic system

Made cumbersome maniplations

- more intuitive
- easier to check
- Diagrammatic algebra Math on a line mo mother a plane
- more aesthetic
allows to make unintuitive definitions intuitive eff. (b)djoint funtors $F, G: C \rightarrow C$
- Peirce (1882) Diagrammatic logic become the simple equalities
- Hotz (1965) String diagrams
- Fun!
- Powerful enough to describe linear algebra
- Many equations at once
- Underlying category theory
-it perfectly evonpalates the structure of a PROP, a symmetric monoidal category gemvated by 1 object
- diagrams encode eqational buradracy
- String diagrams

1. The natural numbers

Rules:

- Diagrams are special graphs which hare inputs on the left and outputs on the right Addition:

$$
\int_{y}^{x} \quad(x, y \in \mathbb{Z}
$$

- Diagrams can be slid across each other "the output is unchanged"

"wires don't tangle" (that wald be braided)

- Inputs and atputs cannot be permuted, they are fixecl, we therefore drop the labels, as they are vedundant
- Diagrams can be composed, as lon as unpts/outputs match:

- Direct sun of diagrams

- Operations:

Direct am and composition

Copying:

$$
\begin{aligned}
& \text { Zero: } 0-0 \\
& \text { Discard: } \times \times \text { - } \\
& \text { Twist: } \\
& (\text { (or now) } \times \times
\end{aligned}
$$

- One last rule: diagrams are built from these blocks

Axioms

Ask: next axiom.

Thing we can do
Theorem $=$ \qquad
(let them prox it)

(Ask for analgaus theorem)
do we need to prove it?
Canting Devise a diagram that talks a number x and multiplies it by n
x - ? - $n x$
If stacc: general theme in math is solving easier problems

Let us abbreviate it:

Defreit recursively: $-D-=\rightarrow \infty$ Proc that it works inductively.

Some more axioms explain

(B1) Convince. What is the reflected version?

(B2)
(B3)
(BL)
Rums: fancy word for there: cocomumuttive bialfebra
Exercises

We have seen that we may represent the numbers as $-(\operatorname{D}$. Is it possible to pore - (b) $=\sqrt{7}$ - ?

Ask.
How do we prove things are different in mathematics? Invariants (es. Euler char, dimension)
We define $\chi(-I)=$ number of paths from left to right. To see that this is an invariant, it suffices to check it on the axioms, es:

2. Linear algebra and diagrams
promised that diagrams encode linear algebra.
The man point is that there is a translation
$\{\underset{n \rightarrow m}{\text { string diagrams }}\} \longleftrightarrow\left\{\begin{array}{l}\text { matrices } \\ n \text { colons } m \text { rows }\end{array}\right\}$
this is an example of an equivaluse of categories, bot even forthor isomorphism of categories.
The translation goes as pellows:

$\rightarrow \rightarrow\binom{1}{1}$
$\rightarrow \quad \rightarrow \quad(1 \quad$ (1 column, 0 rows)
$\rightarrow \quad \rightarrow$ (0 columns, 1 row)
$X \rightarrow\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$A A=B \equiv B A$
$\equiv A=$
$\square B$$\longleftrightarrow\left[\begin{array}{l|l}A & 0 \\ \hline O & B\end{array}\right]$
Reflection \longleftrightarrow Transpose
Example:

simbarly io-. Then we can translate back

Claim: any diagram can be transformed into one as above
Claim: one can abs 80 from diagram to matrix by counting

Could give formal prods, bot it is more important that they familiarize themsehes with the kind of arguments, and it is more fin to discover things by yarself.

Exercises
3. Beyond \mathbb{N}

We intrature a new (morphism) basic diagram to our (category) system:
"the antipode"
This multiplies a number by -1 : $\quad \square-\frac{n}{n}$ and the defining feature is that

How does it interact with the rest of diagrams?
Adding/ copying:

Zero/ discarding:

Rue: fancy word for these: bicommutative Hop/ algebra
Exercises
4. In construction: The power of a flip: rationals, linear maps for free.

Change of plans: braid groups

Week 2
We have seen that diagrammatics can represent afyloraic manipulations.
Bit algebra is not only about solving equation, it is also "the study of algebraic structures". We will look at the most fandatioal abploraic structure: the group.
These are "the essence" of many phenomena in mathematics and efecuhere.

Def: a grape, an abelian group
abstract! e =duty
Examples:
(1) $(\mathbb{Z},+)$
(1) $\left(\mathbb{Z}_{21},+\right)$ no identity
(ii) $(\mathbb{Z} \geqslant 0,+)$ no inverses
(1"') $(\mathbb{Z},-)$ not associative
$\left(1^{N}\right)(\mathbb{Z}, \div)$ not always defined
$\left(1^{v}\right)\left(\mathbb{Z}_{1} \cdot\right)$ no inverses
(1") (\mathbb{Q}, \cdot) not affined at zero
(2) A clock
(3) C_{n}
(4) \qquad
(5) \qquad \geq "and all their combinations, including repeats and inverses"

Operation is composition:

Composition of diagrams is associative, has identity, inverses $(\not X X)$ so it is a group
Not ablian:

$$
x \quad \bar{x}=\ggg
$$

How many elements?
a) 5
b) 6
c) 7
d) ∞
(discuss, vote again)
(6) All combinations of Zn and "How many elements? "order" "Isomorphic to C_{3} " "Sn"
(6)

$$
V_{4}
$$

(7)
 "Isomorphic to S_{3} "

Exercises 1st Block: vote if these are groups, discuss disagreements.

$$
\text { Ind Block: } S_{3}, C_{n}, S_{1}, D_{n}
$$

When dore:

- Lagrange's tHeorem:
- A subgrap $H \subseteq G$ is a subset such that in $x_{x y} \in H$ wy $\in H$ (ii) $\forall x \in H, x^{-1} \in H$

H is itself a gap!
Examples (dort eras)

$$
\equiv \ggg x
$$

C C_{12}

Notice: $|H||G|$
The kind of theorems you prove in algebra: Lagrange's theorem
Relate to original question oort S_{3}
Prof?
Braid group on 2 strands:
\forall "wires tangle!" "generated by $\mathcal{O}=0$ "isomorphic to \mathbb{Z}
On 3 strands:
"generated by :-is:

