

What does an isomorphism of groups look like?
Running example:
$$Sym(\square)$$
 and $C_2 \times C_2$

Recall that we had

$$Sym\left(\bigcap_{A}^{b} \bigcap_{B}^{c}\right) = \left(\bigcap_{A}^{b} \bigcap_{id}^{c} \bigcap_{B}^{c} \bigcap_{id}^{c} \bigcap_{B}^{c} \bigcap_{id}^{c} \bigcap_{B}^{c} \bigcap_{id}^{c} \bigcap_{B}^{c} \bigcap_{id}^{c} \bigcap_{R}^{c} \bigcap_{B}^{c} \bigcap_{id}^{c} \bigcap_{R}^{c} \bigcap_{B}^{c} \bigcap_{id}^{c} \bigcap_{R}^{c} \bigcap_{R}^{c} \bigcap_{B}^{c} \bigcap_{id}^{c} \bigcap_{R}^{c} \bigcap_{R}^$$

They have the same cardinality, so they are isomorphic as sets (good start) How about the operations?

Operation	tables	:										
Sym (🗖		id	۷	Н	R		Cr	xCz	(0,0)	(1,0)	(O,I)	(1,1)
	id	id	۷	Η	R			(0,0)	(0,0)	(1,0)	(0,1)	(41)
	V	V	id	R	H			(1,0)	(1,0)	(0,0)	(),))	(0 11)
	Н	H	R	id	V			(O, I)	(0,1)	(1,1)	(0,0)	(1,0)
	R	R	H	V	id			(1.1)	(1,1)	(0, 1)	(1,0)	(0,0)
Sending	ic \ +	d ⊨ 1 ⊨ 1 ≤ 1 ≤	→ (o → (lı → (0) ()	1	the tables f(x *	s agr y) =	ee", = J	in of	fer w	ords:	

 $H \stackrel{f}{\mapsto} (0,1)$ $R \stackrel{f}{\mapsto} (1,1)$

We arrive at:

If such an isomorphism exists, we say that G and H are isomorphic and we write $G \cong H$.

Question: Classify all groups of cardinality 2
Step 4: We have
$$C_z = (10, 11, +)$$

Step 2: It seems that those are all the possibilities, so let's prove it.
Take some other group of cardinality 2. Say G = 1a.61.
Step 3: By the axioms, there is an identity element, let's say it's a. So we know: $a + a = a$
 $a + b = b$
Step 4: What are the possibilities for $b + b$?
 $b + b = a$ or $b + b = 5$
Then the map OI-3a impossible:
 $1 + 5b$
is an isomorphism
Conclusion: there is exactly one group of cardinality 2 up to isomorphism

Exercises : classify up to isomorphism groups of small orders.