12. When two structures are secretly the same

We will be assigning

Just like we had a notion of equivalence of links: $\cong \cong$ we have a notion of isomorphism of group

For sample, take $G=(\{1,-1\}, \cdot)$ and $H=\left(\left\{T_{\text {re }}\right.\right.$, Fake $\}$, XOR $)$

How to make this mathematically precise?
Sets
Definition: an isomorphism of sets is a function $f: X \rightarrow Y$ such that

1. Different elements get sent to different elements
2. Every element of Y is the image of some element of X for all $y \in Y$, there exits $x \in X$ such that $y=f(x)$
Example: $f\{1,2,3\} \longrightarrow\{A, 3, c\}$

$$
\begin{aligned}
& f(1)=A \\
& f(2)=B \\
& f(3)=C
\end{aligned}
$$

- Injectivity:
- Surjectinty:

We conclude that $\{1,2,3\} \cong\{A, B, C\}$ and we say they are isomorphic as sets

Important observation: take a finite set, for instance

$$
X=\{\text { members of this class }\}
$$

Then we can find an integer $N \geqslant 0$ and an isomorphism

$$
\{1,2,3, \ldots, N\} \longrightarrow X
$$

Definition: the number N above is called the cardinality of X, and is dented $|X|$.
In other words: every finite set is isomorphic (as sets) to one of:

$$
\{4,\{14,\{1,24,\{1,2,34,31,2,3,44, \ldots
$$

Thus we have reached a Classification of finite sets (high brow counting)

Groups
What does an isomorphism of groups look like?
Running example: $S_{y m}(\square)$ and $C_{2} \times C_{2}$
Recall that we had

$$
C_{2} \times C_{2}=\{(0,0),(1,0),(0,1),(1,1)\}
$$

They have the same cardinality, so they are isomorphic as sets (good start) How about the operations?

Operation tables:

Sym (\square)	id	V	H	R
id	id	V	H	R
	V	id	R	H
	H	R	id	V
R	R	H	V	id

$C_{2} \times C_{2}$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

Sending id $\stackrel{\mathcal{f}}{\stackrel{f}{\leftrightarrows}}(0,0)$ the tables "agree", in other words:
$v \stackrel{f}{\xrightarrow{f}}(1,0)$
$H \stackrel{f}{\leftrightarrows}(0,1)$
$f(x * y)=f(x) * f(y)$
$R \stackrel{\mathcal{L}}{\stackrel{(}{b}}(1,1)$

We arrive at:
Definition: Let G and H be groups. A function $f: G \rightarrow H$ is an isomorphism of groups if

1) f is an isomorphism of sets
2) For all $x, y \in G$, $f(x * y)=f(x) * f(y)$ "f respects the operation"

If such an isomorphism exists, we say that G and H are isomorphic and we write $G \cong H$.

A fundamental question in Group Theory is:
Classify grass up to isomorphism
This is a monumental task, unlike the case of finite sets We can, however, take on more modest tasks

Question: Classify all group of cardinality 2
Step 1: We hare $\left.C_{2}=(10,1\},+\right)$
Step 2: It seems that those are all the possibilities, so let's prove it. Take some other gray of cardinality 2. Say $G=\{a, b\}$.
Step 3: By the axioms, there is on identity element, let's say it's a. So we know: $a * a=a$ $a * b=b$
Step 4: What are the possibilities for $b * b$? $b \times a=b$

Then the map $\begin{array}{cc}b * b=a & \text { or } \quad b * a=b \\ 1 \mapsto b\end{array} \quad$ Impossible:
is an 18 orphism
Conclusion: there is exactly one group of cardinality 2 up to isomorphism

Exercies: classify up to somorphism grops of small orders.

