Reminder of Unit theory so far
a biased, not fully faithful geometric representation of mathematics

11. A lightning introduction to group theory

Some history: $a x^{2}+b x+c=0$ as $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$ "Modern notation"

Documented evidence of solutions to the quadratic equation, various degrees of abstraction

$$
a x^{3}+b x^{2}+c x+d=0
$$

Scipione del Ferro $(1465-1526): \quad x=L_{x_{0}}^{x_{0}}$

$$
x_{k}=-\frac{1}{3 a}\left(b+\xi^{k} c+\frac{\Lambda_{0}}{\Delta_{1}}\right)
$$

where $C=\sqrt[3]{\frac{\Delta_{1}+\sqrt{\Delta_{1}^{2}-4 \Delta_{0}^{3}}}{2}}$

$$
\begin{aligned}
& \Delta_{0}=b^{2}-3 a c \\
& \Delta_{1}=2 b^{3}-9 a b c+27 a^{2} d \\
& \xi=\frac{1+\sqrt{-3}}{2}
\end{aligned}
$$

... in words though.
$a x^{4}+b x^{3}+c x^{2}+d x+c=0$

Lodorico Ferrari (1522-1565)

Horrible but completely solved.

Summary of Ferrari's method [edit

Given the quartic equation

$$
A x^{4}+B x^{3}+C x^{2}+D x+E=0
$$

its solution can be found by means of the following calculations:

$$
\begin{aligned}
\alpha & =-\frac{3 B^{2}}{8 A^{2}}+\frac{C}{A} \\
\beta & =\frac{B^{3}}{8 A^{3}}-\frac{B C}{2 A^{2}}+\frac{D}{A} \\
\gamma & =-\frac{3 B^{4}}{256 A^{4}}+\frac{C B^{2}}{16 A^{3}}-\frac{B D}{4 A^{2}}+\frac{E}{A}
\end{aligned}
$$

$$
\text { If } \beta=0 \text {, then }
$$

$$
x=-\frac{B}{4 A} \pm_{s} \sqrt{\frac{-\alpha \pm_{t} \sqrt{\alpha^{2}-4 \gamma}}{2}} \quad(\text { for } \beta=0 \text { only). }
$$

Otherwise, continue with

$$
\begin{aligned}
P & =-\frac{\alpha^{2}}{12}-\gamma \\
Q & =-\frac{\alpha^{3}}{108}+\frac{\alpha \gamma}{3}-\frac{\beta^{2}}{8} \\
R & =-\frac{Q}{2} \pm \sqrt{\frac{Q^{2}}{4}+\frac{P^{3}}{27}}
\end{aligned}
$$

(either sign of the square root will do)

$$
U=\sqrt[3]{R}
$$

(there are 3 complex roots, any one of them will do)

$$
\begin{aligned}
y & =-\frac{5}{6} \alpha+ \begin{cases}U=0 & \rightarrow-\sqrt[3]{Q} \\
U \neq 0, & \rightarrow U-\frac{P}{3 U}\end{cases} \\
W & =\sqrt{\alpha+2 y} \\
x & =-\frac{B}{4 A}+\frac{ \pm_{s} W \pm_{t} \sqrt{-\left(3 \alpha+2 y \pm_{s} \frac{2 \beta}{W}\right)}}{2}
\end{aligned}
$$

The two \pm_{s} must have the same sign, the \pm_{t} is independent. To get all roots, compute x for $\pm_{s}, \pm_{t}=+,+$ and for,$+-;$ and for,-+ and for,-- . This formula handles repeated roots without problem.
Ferrari was the first to discover one of these labyrinthinesolutions ${ }^{[\text {citation needed]. The equation which he solved was }}$

$$
x^{4}+6 x^{2}-60 x+36=0
$$

which was already in depressed form. It has a pair of solutions which can be found with the set of formulas shown above.

$$
a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f=0
$$

300 years pass, many failed attempts (including Euler) Noels Henrik Abel (1802-1829): proof that there is no general formula
 theralais in degree 5 (hence any degree)

Still, some equations could be solved, but which ones?

Evaniste Galois (1811-1832): A complete answer to the question
(affair with fried's of m on et, apparity)

- Worked for all degrees, all possible polynomials
- Elegant answer, deep study of symmetry
- Focuses on structure, rather than calculation. Marks the beginning of contemporary algebra

In particular, he jump-started the field of Group Theory

Group Theory basics
Definition: a set is a collection of objects, withart repetitions.
Examples: $\{0,1,24,\{$ prime knots \}, \{real numbers \}
pinite infinite very infinite
The objects inside the sets are called elements, and whenever an element a belongs to a set A, we write $a \in A$.

Examples: $1 \in\{0,1,2,3, \ldots\}$
$\bigcirc \notin\{$ knots with genus 2$\}$

Definition: a group is a set G together with an operation $*$ satisfying the following axioms:

- For all $x, y \in G, \quad x * y \in G$.

Closure

- For all $x, y, z \in G$

$$
(x * y) * z=x *(y * z)
$$

- There exists an element $e \in G$, such that for all $x \in G$,

$$
x * e=x \quad \text { and } \quad e * x=x
$$

- For all $x \in G$ there exists an element $y \in G$ such that

$$
x * y=e \text { and } y * x=e
$$

We write it x^{-1}

This generalizes many notions you already know:

- $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ with $*=+$ Closure
Associativity:
Unit element:
Inverses:
- $\mathbb{R}_{>0}=\{$ positive real numbers $\}$ with $*=$.

Closure:
Associativity:
Unit element:
Inverses:

- \{True, False\} with $*=X O R$

Closure:
Associatinty:
unit element:

XOR	F	T
F	F	T
T	T	F

"Operation table"
Inverses:

- Symmetries of a rectangle:

Q ?
- Symmetric group on 3 strands, $*=$ concatenation: " S_{3} "

$$
\begin{aligned}
& \{\bar{\equiv}, \geq<,><, x, x<\} \\
& \text { Example: }, \bar{x}=\bar{x}, \bar{x}=\gg
\end{aligned}
$$

Closure: 6 possibilities, all drawn
Associativity:
Unit clement:
Inures:

- Cyclic grop with 12 elements: " C_{12} "

$$
\{0,1,2,3,4,5,6,7,8,9,10,11\}, \quad k=+(\operatorname{mad} 12)
$$

Closoure:
Assocativity:
Unt clement:
Ineeres:

Some nonexamples:

- $\mathbb{Z}, *=-$

Closure:
Associativity: Q
Unit element:
Inverses:

- $\{\equiv, \gg\}$

Q: what fall here?

Some notions for the exercises:
Definition: let g be an element of a grap. The order of g, ord g) is defined as the least power n such that $g^{n}=e$. If no such power exists we say $\operatorname{ord}(g)=\infty$.
Example: of $3=\rightarrow$ in C_{12} then ord $(3)=4$
Definition: a subset A of a set B is another set whose elements are all contained in B. We write $A \subseteq B$.

Example: $\mathbb{R}_{>_{0}} \subseteq \mathbb{R}$
Definition: a subgroup H of G is a subset $H \subseteq G$ with the same operation which is itself a gray

Example: $\{\bar{\square}, \geq\} \subseteq\{\bar{\longrightarrow}, \geq, \gg, \gg\}$

Exercises: investigate these examples, and more

