7. Higher divensions and Lisa Piccirillo's result Hathematicians call $B^3 = \bigoplus$ the (solid) 3-ball. It consists of the points (x, y, z)such that $x^2+y^2+z^2 \leq 1$. Similarly, $B^2 = \bigoplus$ in the plane: the points (x, y) such that $x^2+y^2 \leq 1$. $B^1 = \bigoplus_{i=1}^{n} \frac{1}{2}$

The "bandary" of each is
$$S^2 = \bigoplus_{\chi^2 + \chi^2 = \Lambda}$$
, $S^{\Lambda} = \bigoplus_{\chi^2 + \chi^2 = \Lambda}$, $S^{\bullet} = -1$, $A^{\bullet} = A^{\bullet}$, $X^{\bullet} = \Lambda$

With some imagination,
$$B^4 : x^2+y^2+z^2+w^2 \le 1$$
, $S^3 : x^2+y^2+z^2+w^2 = 1$.
Note that we can fit some B^1 inside $B^3 :$ on the bondary there is an S^3
Similarly, we can fit some B^2 inside B^4 , and on the bondary there will be on S^1 , a Knot.

Definition: A knot in
$$S^3$$
 is topologically spice if it can be obtained as the boundary of a B^2 inside B^4 . It is smoothly spice (or spice) if the B^2 can be embedded "smoothly".

Out of the thosends of knots with
$$\leq 12$$
 crossings, mathematicians proved
that topologically slice a smoothly slice (conjecture, 1980s)
for all but one, Conway's knot:

John Conway (1937-2020)

Lisa Piccirillo (2020):

Theorem: The Conway Knot is not smoothly elice. (The proof uses a sophisticated invariant called Rasmusson's s-invariant).

(Identification gave)