7. Higher dimensions and Lisa Piccirielo's result

Mathematicians call $B^{3}=$ the (solid) 3 -ball. It consists of the points (x, y, z) such that $x^{2}+y^{2}+z^{2} \leqslant 1$.
Similarly, $B^{2}=\rightarrow$ in the plane: the pants (x, y) such that $x^{2}+y^{2} \leq 1$.

$$
B^{1}=\underset{-i}{0} \quad 1
$$

The "boundary" of each is $S^{2}=\bigotimes_{x^{2}+y^{2}+z^{2}=1}, S^{1}=\underbrace{1}_{x^{2}+y^{2}=1}, \quad \delta^{0}=-1$
With some imagination, $B^{4}: x^{2}+y^{2}+z^{2}+w^{2} \leq 1, \quad S^{3}: x^{2}+y^{2}+z^{2}+\omega^{2}=1$.
Note that we can fit some B^{1} inside B^{3} :

Simibrly, we can fit some B^{2} inside B^{4}, and on the boundary there will be an S^{1}, a knot.

Definition: A knot in 5^{3} is topologically slice if it can be obtained as the boundary of a B^{2} inside B^{4}. It is smoothly slice cor slice) of the B^{2} can be embedded "smoothly".

Ot of the thousands of knots with ≤ 12 crossings, mathematicians proved that topologically slice \longleftrightarrow smoothly slice (conjecture, 1980) for all but one, Conway's knot:
 topologically slice smoothly slice?

Lisa Picirillo (2020):

Theorem: The Conway knot is not smoothly slice.
(The proof uses a sophisticated invariant called Rasmussen's s-invariant).

