3. Multiplying knots, table of prime knots

$$
\theta=?
$$

Analogy: Integers

Primes

Theorem: Every knot decomposes uniquely as a product of prime knots.

Definition (Crossing number): The crossing number of a link is the minimum amount of crossings that a link diagram can hate.

Example: $\operatorname{cr}\left(\frac{2}{2}\right) \stackrel{R I}{=} \operatorname{cr}\left(\frac{\mathrm{O}}{\mathrm{O}}\right)$
Now if this is <3, then,\square, since we saw a knot with ≤ 2 crossings is the unknot

However $\neq \mathrm{Cr}(\mathrm{O})=3 . \quad$ в
tricolorable not tricolorable
Q?
Lea: we can classify knots with crossing number n.

Table of prine knots up to 8 crossing-s

O_{1}

71

31

4.

7_{2}

7_{7}

81
82

810
83

813

8_{14}

815

87
88

816

81

8_{18}

8_{19}

- All prime knots have been classified up to 16 crossings
- Number of knots increases rapidly:
http://oeis.org/A002863
- Cautionary tale: He Perko pair

10_{162}

Some open questions:

- Do we have that $\operatorname{cr}\left(K_{1} \# K_{2}\right)=\operatorname{cr}\left(K_{1}\right)+\operatorname{cr}\left(K_{2}\right)$?
- Is there an efficient algorithm to identify a random diagram with one from the table?

Let $f(n)=$ \# prime knots with crossing number n.

- What is $f(17)$?
- Is there a formula for $f(n)$?
- Is it true that $f(n+1)>g(n)$ always?

