Review of last time

- Knots and links
- Reidemeiter mores

$$
\text { RI: } \because \leftrightarrow \bigcap \text { RIT: }() \rightarrow|\mid \text { RIT: } \because /
$$

- When two knots are equal

Today: When two knots are different
2. Invariants and tricolorability

Topology, geometry: "Classify" spaces
Examples: - 3 -manifolds: in haw many ways could the invert be sloped?

- 2-manifods: in how many ways cold the Earth be shaped?

Shaving two are equal: elementary transformations
Shoving two are different, invariants.

Our example: links

- Showing two are equal:

- Showing two are different:

\neq

- How about $\neq 0$?

Definition: A link diagram is tricolorable if one can assign colors to each arc in such a way that:

1) At each crossing either three differat colors meet: or only one:

2) At least two colors are used.

Example:

Nonexample:

Theorem: tricolorability is a link invariant.
(If L is a link and D_{1}, D_{2} are diagrams for it, then D_{1} is tricclomble $\Leftrightarrow D_{2}$ is tricclorable)
Proof: A) - Suppose D_{1} is tricolorable

- Reidememister moves $D_{1} \xrightarrow{R ?} D_{1}^{\prime} \rightarrow \ldots \rightarrow D_{2}$
- Coloring for $D_{1}{ }^{\prime}$:
$L R I: \bigcap \mapsto I^{-1}: \bigcap \mapsto ?$

$L_{\text {VIII }}$

- Repeat for $D_{1}{ }^{\prime \prime}, D_{1}^{\prime \prime \prime}, \ldots, D_{2} \Rightarrow D_{2}$ is tricolorable
B) - Suppose D_{1} is not tricolorable. Then if D_{2} is tricolorable then D_{1} is, a contradiction.
$\Rightarrow D_{2}$ is not tricalorable.

O
∞ 内
（8）

Upshot: new ideas are needed

Q? Executes

