Reminder of last time:

- Groups by generators and relations $G=\underset{\text { gemacolos }}{\langle a, b}\left|\frac{a b=b a, a^{2}=1, b^{2}=1}{\text { relations }}\right\rangle$
- Fundamental group of a link
- Fundamental group of a space

$\pi_{1}(X)=\left\{\right.$ paths on X staring and ending at x_{0}, up to homotopy $\}$

15. A party trick: Brunnian links

Poll: How to make the picture fall?
Explanation: Borromean link!

Q: How to generalize this trick? ??

A: Last week's machinery! Let's solve the 2 pin care first
Recall $\pi_{1}(\square)$

Now consider $\quad X=$

We have two generators:

"Removing a pin" corresponds to adding a relation:

Similarly, removing the other pin gives $b=1$.
So were looking for a word $\neq 1$ in a, b such that:

- If we set $a=1$, the word simplifies to 1 .
- If we set $b=1$, the word simplifies to 1 .

Guesses?

Enter the commutator: $[a, b]=a b a^{-1} b^{-1} a, 1 b 1^{-1} b^{-1}=1$

Picture:

Upshot:

Remark: Same as
 , but flipped.

The point: this approach generalizes:

Three pins:

$$
[[a, b], c]=[a, b] c[a, b]^{-1} c^{-1}=a b a^{-1} b^{-1} c b a b^{-1} a^{-1} c^{-1}
$$

This works:

How this wald look like:

... and back to links:

Brunnian link with 4 components

In the exercises: you will find Brunnian links yourselves!

