

Idea: take a space X and fix a point
$$x_0 \in X$$
. Then
 $\Pi_1(X) = 1$ paths on X starting and ending at x_0 , up to homotopy 4

To illustrate this, take $X = \mathbb{R}^2 \setminus \{(1,1)\}$:

Path, homotopy: [Desmos]

Obsentation: we can compose paths!

1

In fact,
$$T_1(--)$$
 is a group!

Associativity easy, identify element + inverses : in the exercises.

Fact: let X be any topological space. Then
$$\pi_{4}(X)$$
 is a group, called the Fundamental group of X
(the beginning of algebraic topology)

So today we defined
$$\cdot \pi(K)$$
 for a link K
 $\cdot \pi_{3}(X)$ for a space X if the same?
Almost: given K , consider $\mathbb{R}^{3} \setminus K$:
Then $\pi(K) = \pi_{4}(\mathbb{R}^{3} \setminus K)$
But our definition didn't mention paths...
 $a=c^{-b}c$
 $b=a^{-}ca$
 $\longrightarrow \pi(\operatorname{trefoll}) = \langle a, b, c | a=c^{-}bc, b=a^{-}ca, c=b^{-}ab \rangle$

In the exercises: explore fundamental groups of spaces (not knots!)