5. Knot theory for computers
6. Write down the PD code for the following link diagrams:
a)

b)

Hint : recall the procedure was:

- Step 1

Break into pieces: Decode using the rule:

- Step 2 :

$$
\leadsto[(1,5,2,4),(5,3,6,2),(3,1,4,6)]
$$

2. Draw the link diagrams associated to the following PD codes:
a) $[(1,2,2,1)]$
b) $[(1,1,2,2)]$
c) $[(4,2,3,1),(1,3,2,4)]$
d) $[(3,1,4,2),(4,1,3,2)]$

$$
[(1,5,2,4),(5,3 ; 6,2),(3,1 ; 4,6)]
$$

Recall: - Step 1: draw the crossings you need, anywhere you like:

- Step 2: match the edges accordingly $-\left.\left.\right|_{-} ^{2} \quad 2\right|_{3} ^{6} \div\left.\right|_{3} ^{4}$

3. Plot the links you obtained in 1 and 2 in Sage.

Recall the example:

4. (Optional) Recall the connected sum of two knots:

In Sage, this is implemented as.

L2_snappy $=$ snappy. Link
L 1 = L1_ snappy. sage link
L2 = L2_snappy.sage_link()
L_sum $=$ L1.connected $\operatorname{sum}(\mathrm{L} 2)$
Choose any two knots you like (egg. from the table of prime knots) and record the Jones polynomial (I1.jones_polynomial()) of each as p_1 and p_2 and verify that $L_{\text {_sum.jones_polynomial() and expand (p_1*p_2) are equal. }}^{\text {(}}$) We are thus experimentally verifying that $J\left(K_{1} \# K_{2}\right)=J\left(K_{1}\right) \cdot J\left(K_{2}\right)$.
5. Obtain PD codes for the following link diagrams using SnapPy. Then verify using Sage that their Jones polynomials are equal:
a)

b)

6. Obtain the Jones polynomials of the following links and their mirror images.

Do you see a pattern? Conjecture it mathematically. Help: in Snappy's editor, go to Toss \rightarrow Reflect
a)

b)
 to get the mirror image

