Guided exercise: SL2(R) is not a matrix group.

Let $\Phi: SL_2(\mathbb{R}) \longrightarrow GL_n(\mathbb{R})$ be a Lie group homomorphism. You will prove that $\ker \Phi \neq 1$. (a) Define a functor $\mathbb{C}_{\mathbb{R}}^{\infty-1}$ Lie algebras in the algebras is such that $\lim_{\substack{k \in \mathbb{R}}} \frac{\mathbb{C}_{\mathbb{R}}^{\infty-1}}{\lim_{\substack{k \in \mathbb{R}}}} \lim_{\substack{k \in \mathbb{R}}} \mathbb{C}_{\mathbb{R}}^{\infty-1}}$

This means that we have a natural isomorphism of functors $(Co-) \circ \text{forget}_{C} = \text{forget}_{R} \circ (Co-).$

This is called complexification.

(b) Take $\Psi = \text{Lie}(\Phi)$ and complexify it to get Ψ_{c} : $sl_{c}(c) \rightarrow gl_{n}(c)$. Argue that you can lift this to a real Lie group homomorphism Ψ : $Sl_{c}(c) \rightarrow Gl_{n}(c)$.

(c) Pestrict
$$\gamma$$
 to $SL_2(\mathbb{R}) \subseteq SL_2(\mathbb{C})$ to get $\gamma_{\mathbb{R}} : SL_2(\mathbb{R}) \to GL_n(\mathbb{C})$. Prove that Lie $(\gamma_{\mathbb{R}}) = \rho$.

(d) Let
$$\pi: SL_2(\mathbb{R}) \longrightarrow SL_2(\mathbb{R})$$
 be the projection map. Use the fully-faithfulness of Lie(-) to show that $\Psi_{\mathbb{R}} \circ \pi = \Phi$.
(e) (onclude that $Ker(\Phi) \ge Ker(\pi)$ and therefore Φ is not injective.

Remark: complexifications are also defined for Lie groups, and in this case the complexification of SLZ(R) is actually SLZCO).