The dial with foams II
0. Reminder of last time:

- Webs

$\leftrightarrow g_{n}$-intertwines between \otimes of $\Lambda^{i} V$

Evaluation of closed webs: $\Gamma \mapsto\langle\Gamma\rangle \in \mathbb{Z}\left[q, q^{-1}\right]$

- Foams: cobordisms between webs

- Universal construction: web $\left.\Gamma \leadsto F_{n}(\Gamma)=W_{n} / \operatorname{kere}(C,)_{n}\right)$
where $(\rangle_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ Foam evaluation
- $F_{n}(\Gamma)$ categonfics $\langle\Gamma\rangle$, ie. $q \operatorname{dim}\left(F_{n}(\Gamma)\right)=\langle\Gamma\rangle$.
- Braiding identity m gln-polynomial of links $P_{n}(q)$

$$
M=-q \uparrow \uparrow+\cup \cap \quad P_{n}(q)=\operatorname{HOHFLY}\left(q, t=q^{n}\right)
$$

- Richard complexes \sim Complex $C_{*}(L)$ with $\chi_{q}\left(C_{*}(L)\right)=P_{n}(q)$

$C_{*}(L)=\bigotimes_{\text {crossings }}$ Richard complex
(This agrees with ShR for $8 / \mathrm{s}$)

Today: - Describe Sergel bimodules (type A) in terms of foams, as well as $H H_{0}$.

- Describe a "symmetric" Khovanor-Rozansky link homology for $\operatorname{HOMFLY}\left(q^{\prime \prime}, q\right)$

1. Symmetric MOY calculus

Analogous to (exterior) MOY calculus for $\Lambda^{i} V$ but with $S^{i} V$ for $\& \ell_{N}$:

$$
\begin{aligned}
& \left.\|\rangle_{a}^{b}\right\rangle_{b}^{a} \|=\sum_{k=\max (0, b-a)}^{b}(-1)^{k-b} q^{k-b}\langle\underset{\underbrace{k}_{a}}{\underbrace{b}_{b}} \underbrace{a}_{b}\rangle \\
& \left.\|\rangle_{a}^{b}\right\rangle_{b}^{a} \|=\sum_{k=\max (0, b-a)}(-1)^{k-b} q^{b-k}\langle\underset{\underbrace{b}_{a}}{\substack{b \\
b}} \uparrow_{b}^{a}\rangle
\end{aligned}
$$

Some remarks:

- In the uncolored case this gives the same polynomial as the exterior calculus Hewer, $\left\langle\left\langle\bigcup_{S^{\circ} V}\right\rangle\right\rangle_{N}=\left[\begin{array}{c}N+a-1 \\ a\end{array}\right]$ whereas $\left\langle\bigcup_{N^{Q V}}\right\rangle_{N}=\left[\begin{array}{l}N \\ a\end{array}\right]$
- Theorem $\left(W_{0}, 2014\right):\langle\langle\text { closed web }\rangle\rangle_{N}=$ Vale of closed web as an intertwines $\mathbb{C}\left[q^{ \pm 1}\right] \rightarrow \mathbb{C}\left[q^{ \pm 1}\right]$
- (As far as 1 know): It's open to show that the functor from the spider category: $S_{p_{s y m}}(N)=\left\{\begin{array}{l}O_{b j e c t s: ~ s e q u e n c e s ~ o f ~ i n t e g e r s ~} \\ \text { Morphisms: webs between them modulo symmetric MOY relations }\end{array}\right.$ is an equivalence.
If so, then $\operatorname{Kar}\left(S_{P_{S_{q m}}}(N)\right) \cong U_{q}\left(s S_{N}\right)-\bmod$.

2. Two special Winds of webs

Definition: Let \underline{k}_{0} and ${\underline{k_{1}}}$ be sequences of integers.
A $\underline{k_{0}}$-web- $-\underline{k_{1}}$ is a web Γ between then:

$\underline{K}_{1}=(\mathbf{2}, \mathbf{3},-1) \rightarrow$ level $2+3-1=4$
A \underline{k}_{0}-web- \underline{k}_{1} is braid-like if all arrows point up

"Matiplicity of $S^{l} V$ in $S^{k \cdot} V \theta \ldots \otimes S^{k m} V$ is 1

Definition: A vinyl graph is a web in the annulus whore arrows rotate "positively":

level = "\#tracks" $=\operatorname{rot}(\ldots \operatorname{coh})=\operatorname{sigand} \#$ circe

Remark: clearly every vinyl graph is the closure of a braid-like web:

Theorem (Oreflec-Rox, 2016): The $\mathbb{Z}\left[q^{ \pm}\right]$-moduk generated by vinyl graphs of level l is generated by:

for all tuples with $l=k_{1}+\ldots+k_{m}$.
3. Two special Kinds of foams

Disk-like foams (aka HOMFLY-PT foams)
Recall that foams are CW-romplexes with thickness

Decorations are symmetric polynomial in \#variables = thickness

And there is a monoidal functor $F_{N}: \mathcal{F o a m}_{N} \longrightarrow \frac{\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]-\operatorname{gmod}}{\mathbb{Z}[x]}$ where Foam ${ }_{N}$: Objects: webs

- Morphosis: foams

Equiradartly: 2-portor: "Foam" \rightarrow "Z$[x]-m o d "$

- Objects: finite sequences \underline{k}
- Morphism: webs
- 2 -mophsusus: pans
- Object: *
- Morphisms: Graded Z[x]-mooules
- 2-morphisms: graded homomorphisms

Definition: A disk-like foam F is a foam in a faxed $[0,1]^{3}$ such that:

- The bandany lies on the shaded region, and it consists of braid-like urcbs:

- Normal vectors to the fam are never parallel to the pave

disk-like

not disk-like

Remark: they are called disk-like because each "sheet" consists of a disk touching all for sides:

egg:

Free floating sphere, not a disk:

Also, no holes, etc.

Remark:
A special kind of disk-like foam: fix a braid-like web Γ (e.g.

Then: - Γ is on the top

- Standard trees are on the sides
- A single strand on the bottom

"Rooted Γ-foam"
It is called tree-like if each slice is a tree:
Fact: a rooted Γ-foam is ∞-equivalent to a \mathbb{Z}-liner combination of tree-like ones.

Define a 2-category DLF

- Objects: positive integer sequences k of level N
- Morphisms: Braid-like webs between them $\Gamma: \underline{k}_{0} \rightarrow \underline{k}_{1} \quad($ level N)
- 2-morphisms: only between pairs of \underline{k}_{1}-uebs-ko Γ_{0}, Γ_{1} so that:

Horizontal composition:
Vertical composition:

Recall the functor $F_{N}:$ Foam $\rightarrow \mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]^{S_{N}}-\operatorname{gmod}$.
If two foams $F, G: \varnothing \rightarrow \Gamma$ have $F_{N}(F)=F_{N}(G)$, they are N-equivalent.
Some foams are N-equivalent for all N, e.g we can replace

by

and F_{N} want see it.
" ∞-equivalent"

Definition: Form the 2-category $\widehat{D_{L} F_{N}}$ by extending \mathbb{Q}-linearly the 2 -morphisins and modding out by ∞-equivalence.
Remark: 2 -homs spaces are graded: $\quad \operatorname{deg}(F)=\operatorname{deg}^{\wedge}(F)-\frac{\left\|K_{0}\right\|^{2}+\left\|K_{1}\right\|^{2}+2 N^{2}}{4}$
Horizontal and vertical compositions are additive in this grading

Vinyl foams (aka symmetric foams)
Braid-like webs \rightarrow Disk-like foams
Vinyl graphs \longrightarrow Vinyl foams

Example:

Remarks: - Also require normal vectors to not be "parallel to the cylinder \rightarrow Each "sheet" consists of a cylinder, called a tube.

- Cutting up a vinyl foam along a radius gives a disk-like foam.
- The category TL F F_{k} : - Objects: vinyl graphs of feel k
- Morphisms: vinyl foams

Remark:
The analog of the rooted Γ-foam is the vinyl Γ-foam- S_{k} :

It's also called tree-like of the slices are trees.
4. Singuar Soergel bimodrles via foams

Let $R=\mathbb{Q}\left[x_{1}, \ldots, x_{N}\right]$, and for $T \subseteq S_{n}$, dende $R^{\top}=\{T$-invanant polyromicals in $R\}$
Write grading sungts as $M(n)=M q^{n}$. Let $S=\left\{s_{i}=(i i t)\right\} \leq S_{n}$.
Define the 2-category SBSBim $\subset R$-bim
 (parabbic aypaps of S_{n})

- 2-morphisnos: bimodle maps Res

Examples of 1 -morphisms for $N=3$:

- $\phi \rightarrow\left\{s_{1}\right\} \rightarrow \phi \rightarrow\left\{s_{2}\right\} \rightarrow \phi$

$$
\begin{aligned}
& \text { - }\left\{s_{1}\right\} \rightarrow\left\{s_{1}, s_{2}\right\} \rightarrow\left\{s_{2}\right\} \rightarrow \varnothing
\end{aligned}
$$

Another way to depict singlar Bott-Samelon bimoobks:
Γ braid-like \underline{k}_{1} web- $-\underline{k}_{0} \leadsto \mathcal{B}(\Gamma) \in \operatorname{Hom}_{\text {sossim }}\left(\underline{k}_{0}, \underline{k}_{1}\right)$

Finally, define ρS Bim $:=\left(\theta, \frac{c}{\theta}, q^{\frac{a}{2}}\right)$-completion of SBSBim.
Remark: $\operatorname{Hom}_{\text {SBSBim }}(\phi, \phi)=\mathbb{B S B i m}$ and $\operatorname{Hom}_{\text {SSBim }}(\phi, \phi)=$ SBim .

We construct a 2 -functor $\quad F_{\infty}^{D}: D L F_{N} \longrightarrow S B S B i m$

Γ baid-like $\mapsto F_{\infty}^{D}(\Gamma)=R^{\$_{N}} \cdot\{$ rooted Γ-foams
 $\} / \infty$-equivalence
F disk-like foam ص $F_{\infty}^{D}(F): F_{\infty}^{D}\left(\Gamma_{0}\right) \rightarrow F_{\infty}^{D}\left(\Gamma_{1}\right)$ given by $F 0(-)$

A prion, it's undear that this maps to SBSBim

Proposition (Rdert-Wagner, 2019) The folboung hold:

1. Let k be positive of level N. Let I be $\underset{k_{1}}{\overrightarrow{k_{i}}} \cdots \overrightarrow{k_{i}} \quad$ (generators of parabolic scograp) $F_{\infty}^{D}\left(\nmid \prod_{k_{1} k_{2}} \psi_{k_{e}}\right)$ has an $R^{s_{n}}$ - algebra structure and is isomorphic to R^{I} as an algebra.
2. Let k_{0}, k_{1} be positive of level N and $l e t I_{0}, I_{1} \subseteq S_{n}$ the corresponding sets of generators. $K_{\infty}^{D}(\Gamma)$ has a $\left(R^{I_{1}}, R^{I_{0}}\right)$-bimodrle structure
3. $\sigma_{\infty}^{D}\left(t-\underset{k_{0}}{\stackrel{k_{0}}{x}} \ldots t\right) \cong R_{R^{I_{2}}}^{R_{0}^{I_{0}}} R^{I_{0}} \quad$ as bimodiks $F_{\infty}^{D}\left(\uparrow \cdots \underset{k_{0}}{\frac{k_{1}}{A}}-\lambda\right) \cong x_{x_{0}}^{I_{0}} R_{R^{I_{1}}}^{I_{1}} \quad$ as bimoduks
4. $F_{\infty}^{D}\binom{\Gamma_{0}}{\Gamma_{0}} \cong F_{\infty}^{D}\left(\Gamma_{\Lambda}\right)_{R^{J_{0}}}^{\otimes} F_{\infty}^{D}\left(\Gamma_{0}\right)$

Corollary: The 2 -functor F_{∞}^{D} is well-defined

Sketch of proof:

1. Let k be positive of leal N. Let I be $\overrightarrow{k_{1}} \overrightarrow{k_{i}} \cdots \overrightarrow{k_{i}}$ (generators of parabolic shograp) $F_{\infty}^{D}\left(\begin{array}{lll}\nmid & k_{k_{1}} & k_{k_{e}}\end{array}\right)$ has an $R^{S_{n}}$ - algebra structure and is isomorphic to R^{I} as an algebra.

Idea:

Isomorphism is given by $f_{1} \bullet \ldots \circ o_{k} \mapsto$

2. Let k_{0}, k_{1} be positive of level N and $k t I_{0}, I_{1} \subseteq S_{n}$ the corresponding ats of generators. $\mathrm{K}_{\infty}^{D}(\Gamma)$ has a $\left(R^{I_{1}}, R^{I_{0}}\right)$-bimodal structure:

3. $T_{\infty}^{D}(t-\underset{\underline{\underline{n}}}{\underline{\underline{n}}} \ldots h) \cong R_{R_{0}^{I_{2}}}^{R_{0}^{I_{0}}} \quad$ as bimodes

Simitaly for $\uparrow \cdots \underset{k_{0}}{\frac{k_{0}}{x}}-\uparrow$
B

Fact: $F_{\infty}^{D}: D L F_{N} \longrightarrow \underset{G L F_{N}}{G B S \operatorname{Bim}}$

Conjectore (Rotart-Wagner): $\widehat{D L F} \hat{F}_{N} \rightarrow$ SBSBim is an eqquivatence of 2-categonies.
5. Hochschild homology

Take Γ braid-like web: $\underline{k} \rightarrow \underline{k}$ and $k t \hat{\Gamma}$ be its closure. Let $I c S_{n}$ correspond to \underline{k}. Define $\mathcal{F}_{\infty}^{\top}(\hat{\Gamma})=\{$ vinyl $\hat{\Gamma}$-foams $\} / \infty$-equivalence
Proposition (Robert-Wagner): $H_{0}\left(R^{I}, F_{\infty}^{D}(\Gamma)\right) \cong \sigma_{\infty}^{\top}(\hat{\Gamma})$
Sketch: "Closing up" gives a map $\pi: F_{\infty}^{D}(\Gamma) \rightarrow F_{\infty}^{\top}(\hat{\Gamma})$.
Now this identifies the left and right R^{I} actions:
So π factors through $F_{\infty}^{D}(\Gamma) /\left[F_{\infty}^{0}(\Gamma), R^{ \pm}\right]=H H_{0}\left(F_{\infty}^{D}(\Gamma)\right)$

Surjectivity comes from the relations. Then dimension cont. is

Remark: Upcoming work by Khoranov - Robert - Wagner contains a complete description of all HH_{*}.

6．Evaluation of vinyl foams
Finally，we categorify the symmetric MOY calculus

$$
\begin{aligned}
& \text { Write } A_{k}=\frac{\left.\mathbb{Q}\left[x_{1}, \ldots, x_{N}\right]\left[y_{1}, \ldots, y_{k}\right]\right]_{k}}{k} \\
& J_{k}=\left\langle\prod_{i=1}^{N}\left(x_{j}-y_{i}\right): j \in\left\{1, \ldots, N_{i}\right\rangle\right. \\
& M_{N, k}=A_{k} / A_{k} \cap J_{k}
\end{aligned}
$$

Fact：$M_{N, k}$ is free over R ，with basis $\left\{m_{\lambda}\left(y_{1}, \ldots, y_{k}\right): \lambda\right.$ is a Yong tableaux with $\leq k$ rows $\}$ \ln fart， $\operatorname{grk}\left(M_{N, k}\right)=\left[\begin{array}{c}k+N-1 \\ k\end{array}\right]$ $\leqslant N-1$ coles
－M Mir is a commutative Frobenius algebra，with trace

$$
\varepsilon_{N, k}: m_{\lambda} \mapsto\left\{\begin{array}{lll}
1 & f & \lambda=\left.\frac{\| ⿴ ⿱ 冂 一 ⿱ 一 一 厶 ⿲ 丿}{k-1}\right|^{k} \\
0 & 0 / \omega
\end{array}\right.
$$

Evaluation of S_{k} - vinyl foam $-S_{k}$

Universal construction: Functor $S_{k, N}: T L F_{N} \rightarrow \mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]-\bmod$

$$
\text { Vinyl graph } \Gamma \mapsto \mathbb{Z}[x] \cdot\left\{\text { vinyl fame: } S_{k} \rightarrow \Gamma\right\} /\left\langle(,)_{N}\right.
$$

Vinyl foam Fr indued homomorphism

Example: $S_{k, N}\left(S_{k}\right)=M_{N, k}$, a categonfication of $\langle\langle\bigcirc\rangle\rangle_{N}=\left[\begin{array}{c}k+N-1 \\ k\end{array}\right]$
Sketch of proof: Let $\varphi: A_{k} \rightarrow S_{k, N}\left(S_{k}\right)$

$$
P \mapsto
$$

Using the evaluation, one shows that these actually span $S_{K, N}\left(S_{K}\right)$ Recall abs that the evaluation kills $J_{k} \cap A_{k}$, so we get an indued map

$$
\tilde{\varphi}: M_{N, k} \rightarrow S_{k, N}\left(S_{k}\right)
$$

W_{k} show that it is infective: take $x \in M_{N, k}$ nonzero. Since $M_{N, k}$ is a Fob alg, there is some $y \in M_{M, x}$ such that $\varepsilon(x y) \neq 0$. Let $\tilde{\varphi}(x)=X, \phi(y)=Y$ be R_{N}-linear combinations of vinyl $S_{k}-$ farms $-S_{k}$ Then $\langle\langle x \cdot y\rangle\rangle_{N}=\varepsilon(x y) \neq 0$ so $X=\tilde{\varphi}(x) \neq 0$.

Theorem (Robert-Wogrer) : $\operatorname{grk}\left(\Theta_{k, N}(\Gamma)\right)=\langle\langle\Gamma\rangle\rangle_{N}$

Closing remarks

- An earlier (satisfactory) approach (2014) to N-foams exists: Queffelec-Rose "KhR via categorical skew Have duality"
- Robert-Wagner's approach is "backwards compatible". Also, their technology describes not only 2-morphisns in SSBim, bit also the 1 -mophisms (the Sins themedes).
- The invariance of Robet-Wagner's symmetric KhR is proved by finding a spectral sequence from $H H H \Rightarrow$ Symkhr.
- Much to do: Deformations, integrality, categorical actions, spectral sequences, other RT invariants...
- Fundamental open question: is there a may to define symmetric Khavanov-Rozansky homology for webs in general? (As opposed to braid-like vets only)

Thank you!
Question?

