The deal with foams II

0. Reminder of last time:
• Webs
$$(f_{a}, f_{a}, f_{a}) = (f_{a}, f_{a}) = (f_{a}, f_{a})$$

Evaluation of class webs: $(f_{a} \mapsto \langle f \rangle \in \mathbb{Z}[q,q^{d}]$
• Focums: robordisms between webs
• (Inversal construction: web $(f_{a} \mapsto f_{a}(f)) = W_{n} \underset{Ker(l,k)}{Ker(l,k)}$
where $(f_{a}, f_{a})_{n} := \langle f_{a}(f_{a}) \rangle_{n} \in \mathbb{Z}[w_{1}, \dots, w_{n}]^{S_{n}}$ Focum evaluation
• Fr(f) rategorifies $\langle f^{n} \rangle$, i.e. $q \dim(F_{n}(f^{n})) = \langle f_{n} \rangle$.

Today:

• Rickard complexes
$$C_{*}(L)$$
 with $X_{q}(C_{*}(L)) = P_{n}(q)$
 $F_{n}(I)$
 $F_{n}(I)$
 $C_{*}(L) = \bigotimes_{(rossings)} Rickard complex$
 $C_{*}(L) = (This agrees with KhR for sl_n)$

· Describe Sergel bimodules (type A) in terms of loams, os well as HHo.

· Describe a "symmetric" Khovanov-Rozansky link homology for HOHFLY (q",q)

1. Symmetric MOY calculus

Analogous to (exterior) MOY calculus for N'V but with S'V for sln:

Some remarks:

2. Two special kinds of webs
Definition: Let K₀ and K₄ be sequences of integers.
A K₀-web-K₀ is a web
$$\Gamma$$
 between them:
 $K_{0} = (1,-1,1,3)$
 $K_{0} = (1,-1,1,3)$

K . Zy

Remark: clearly every vinight graph is the closure of a braid-like web:

Definition: A disk-like focum F is a focum in a foced E0,13³ such that: • The boundary lies on the shaded region, and it consists of braid-like webs:

disk-like

not disk-like

Remark: they are called disk-like because each "sheet" consists of a disk touching all four sides:

Also, no holes, etc.

Remark: A special kird of disk-like joan: fix a braid-like web Γ (e.g. fiThen: Γ is on the top

- · Standard trees are on the sides
- · A single strand on the bottom

- Remarks: Also require normal vectors to not be "pavallel to the cylinder" Ly Each "sheet" consists of a cylinder, called a tube.
 - · Cutting up a viny? Joans along a radius gives a disk-like Joans.
 - The category TLF_{k} : Objects: vinyl graphs of lad k
 - · Morphisms: viny! Joams

Remark:

It's also called tree-like if the slices are trees.

4. Singular Soengel bimodules via fairns
Let
$$R = O[x_1, ..., x_n]$$
, and for $T \subseteq S_n$, dende $R^T = \{T : invariant polynomials in R \}$
Write grading shifts as $H(n) = Mq^n$. Let $S = \{S_i = (i:w)\} \leq S_n$.
Define the 2-category SBSBing $\subset R$ -bim
"Objects: subsets of $\{4, ..., n-1\} \iff$ subsets $I \subseteq S \iff \{R^T \text{ as an } (R^T, R^T) - \text{bimodule } \}$
(pandule supers of S_n)
"Horphisms: Induction and restriction functions, i.e. tensors of $R^T R_R^T = (-)q^{S(LS)}$
"2-morphisms: bimodule maps
Examples of 1-morphisms for N=3:
 $\emptyset \implies \{s_{2}^{L} f \implies \emptyset \implies \{s_{2}^{L} f \implies \emptyset}$
 $R^T g^{s_{2}} R^{s_{2}} \otimes R^{s_{2}} \otimes R^{s_{2}} R^{s_{2}} q^{-2}$ (= $BS(s_{1}s_{2})$)
 $\{s_{2}^{L} f \implies \{s_{2}s_{1} \implies \{s_{2} f \implies \{s_{2}^{L} f \implies \{$

Finally, define $SSBim := (\oplus, \oplus, q^{\oplus}) - completion of SBSBim.$ Remark: HomSBSBim $(\emptyset, \emptyset) = BSBim and Hom (\emptyset, \emptyset) = SBim.$

F disk-like form
$$F_{\infty}^{\mathfrak{o}}(F) : F_{\infty}^{\mathfrak{o}}(\Gamma_{\mathfrak{o}}) \to F_{\infty}^{\mathfrak{o}}(\Gamma_{\mathfrak{o}})$$
 given by $F \circ (-)$

A priori, it's undear that this maps to SIBSBim

Proposition (Rdert-Wagner, 2019) The following hold:
1. Let K be positive of herd N. Let I be
$$\xrightarrow{K_{1}} \xrightarrow{K_{2}} \xrightarrow{K_{$$

*L*et <u>ko</u>, <u>ki</u> be positive of rever 14 and let <u>i</u>o, <u>i</u> = Sn we under <u>y</u> are $F_{\infty}^{D}(P)$ has a $(R^{I_{1}}, R^{I_{0}})$ - bimodule structure:

Similarly for + ... K-+

ß

Fact: \mathcal{F}_{ω}^{D} : $DLF_{N} \longrightarrow SBSBim$ DLF.

(conjecture (Robert-Wagner): $DLF_N \rightarrow SBSBim$ is an equivalence of 2-categories.

5. Hochschild homology

Take
$$\Gamma$$
 braid-like web: $k \to k$ and let $\hat{\Gamma}$ be its chosure. Let $I \subset S_n$ correspond to k .
Define $\mathcal{F}_{\infty}^{\mathsf{T}}(\hat{\Gamma}) = \frac{1}{2} \operatorname{vinyl} \hat{\Gamma} - \frac{1}{2} \operatorname{parms} \frac{1}{2} / \infty - \operatorname{eq.usalerce}$
Proposition (Robert - Wagner): $HH_0(\mathbb{R}^{\mathsf{T}}, \mathcal{F}_{\infty}^{\mathsf{D}}(\Gamma)) \cong \mathcal{F}_{\infty}^{\mathsf{T}}(\hat{\Gamma})$
Sketch: "Closing up" gives a map $\pi: \mathcal{F}_{\infty}^{\mathsf{D}}(\Gamma) \to \mathcal{F}_{\infty}^{\mathsf{T}}(\hat{\Gamma})$.
Now this identifies the left and right \mathbb{R}^{T} actions:
So π factors through $\mathcal{F}_{\infty}^{\mathsf{D}}(\Gamma) / [\mathcal{F}_{\infty}^{\mathsf{D}}(\Gamma), \mathbb{R}^{\mathsf{T}}] = HH_0(\mathcal{F}_{\infty}^{\mathsf{D}}(\Gamma))$
Sxjectivity counce from the relations. Then dimension count. \Box

Remark: Upcoming work by Khovanov-Robert-Wagner contains a complete description of all Htty.

5. Evaluation of vinyl factors
Finally, we categorify the symmetric MOY calculus
Write
$$A_{k} = \underbrace{\operatorname{QE}_{k_{1},...,k_{N}}}_{K} \underbrace{J_{k}}_{K} = \langle \prod_{k=1}^{m} (x_{j} - y_{k}) : j \in H_{1,...,N_{1}} \rangle$$

 $M_{N,K} = A_{k} / A_{k} \cap J_{k}$
Fact: • $M_{N,k}$ is free over R, with basis $\{M_{\lambda}(y_{1},...,y_{k}): \lambda \text{ is a Yang tableaux with sk rows }$
In fact, $grk(H_{N,k}) = \begin{bmatrix} k+N-1 \\ k \end{bmatrix}$
• $M_{N,k}$ is a commutative Frobenius algebras with trave
 $E_{N,k}: M_{\lambda} \mapsto \int \frac{1}{2} if \lambda = \bigoplus_{n=1}^{m} i^{*}$

Evaluation of
$$S_{k}$$
 - vinyl fram - S_{k}
 $F = \bigcup_{s} S_{s} (F) \in M_{N,k} (F) \in M_{N,k}$
 $F = \bigcup_{s} S_{s} (exterior)$
Universal construction: Functor $S_{k,N} : TLF_{N} \rightarrow Z[x_{0,...,x_{N}}] - mod$
 $Vinyl graph \Gamma \mapsto Z[XS - l vinyl frams : S_{k} \rightarrow \Gamma \frac{1}{\langle \langle \cdot, \rangle \rangle_{N}}$

Closing remarks

- · An earlier (satisfactory) approach (2014) to N-Joanns exists: Queffelec-Rose "KhR via categorical
- Robert Wagner's approach is "backwards compatible". Also, their technology describes not only
 2 morphisms in SSBin, but also the 1-morphisms (the SBins themselves).

- · Much to do: Deformations, integrality, categorical actions, spectral sequences, other RT invariants...
- Fundamental open question: is there a may to define symmetric Khowanov-Rozansky homology for webs in general ? (As opposed to braid-like webs only)

