The deal with foams

Today: intro to $8 l_{n}$-foams
Next time: HOMFLY-PT foams, approach to Hobldsind homology, etc.

1. How to get a link invariant from a brailed category

Let e be a monoidal category with duals (e.g. $e=\operatorname{Rep}_{g}^{\text {f. }}$, or $e=A$-mod, A Hoof afebira)
Example: let A be a Hopf algebra (bialgebra + antipode), such as $U(g) \begin{cases}i \\ \begin{array}{l}i \\ \Delta(x)=x=1+10 x\end{array} & x \in g \\ \varepsilon(x)=0 & x \in g \\ s(x)=-x & x \in g\end{cases}$
We say that E is braided if it has a 2 -morphism $c: \otimes \rightarrow \otimes^{\circ p}$ st.:

- $c_{N:}: X \oplus Y \rightarrow Y \otimes X$ invertible, inverse $c_{x y}^{-1}$
- Depict $c_{x y}$ as $X_{x y}^{y x}$ and $c_{x y}{ }^{-1}$ as X_{y}^{x} x so $Y^{y}=\|=Y^{\prime}$

Note: this introduction is not chronological

Q: how to make A-mod braided? (A Hoof algebra)

$$
\begin{aligned}
& C_{X Y}:=X \otimes Y \longrightarrow Y \otimes X \quad \text { Conditions on } R: \text { sup } \circ \Delta(a)=R \Delta(a) R^{-1} \quad \text { "Universal } R \text {-matrix" }
\end{aligned}
$$

$$
\begin{aligned}
& (A \text { od })(R)=R_{13} R_{23} \\
& (i d \Delta \Delta)(R)=R_{1 B} R_{12}
\end{aligned}
$$

Key example: $A=u_{q}(g), \quad R=\sum_{\left.a_{i} \text { bess } g u_{i} \theta l_{i}\right)} a_{i}^{\tau}$. Such Hoof algebras are called quasitriangular.
(tedmalaly infante, talk completion add restrict...)

Theorem (Restetikhin-Turaev, 1990):
Braided monoidal categories with duals yield invariants of colored oriented links. (technically framed...) by objects in e

Construction (Reshetikhin-Turaev):
Example: Take the foll subactegory of $U_{q}\left(g_{n}\right)$-mod \otimes-generated by $\Lambda^{0} V, \ldots, \Lambda^{n} V$ and their duals $\Lambda^{\wedge} V^{*}, \ldots, \Lambda^{n} V^{*}$

If we color every component by V, we get $\operatorname{HOMFLY}(O)\left(q, t=q^{N}\right)$
2. Webs (MOY calculus)

For some categories, ham spaces have nice combinatorial bares.
Example 1: $e \subseteq u_{q}\left(d_{2}\right)$ full sbategay \odot-generated by $V\left(=C(q)^{2}\right)$
Then the morphosis

and

$\otimes, 0$-generate all Homs spaces, ie. all morphisms are linear combination of things like:

Wait... where did the crossings go?

Rok: these dograms are the morphisms of the Temperly-Lieb category for $\delta=-[2]$
Rank 2: $\operatorname{Kar}(e)=U_{q}\left(X_{n}\right)-\operatorname{mad}$ so molly this controls all of it

Example 2: Take again $C=$ full subcategory of $U_{q}\left(g l_{n}\right)$-generated by $\Lambda^{0} V, \ldots, \Lambda^{n} V$ and their duals $\Lambda^{0} V^{*}, \ldots, \Lambda^{n} V^{*}$
Then every morphism is $\otimes, 0$-generated by:

$\mathbb{C}(q) \quad q^{\left|T<I_{N}\right|-\mid I_{N}\langle I|} \delta_{J J}$

$\mathbb{C}(q)$

$\left.\mathbb{C}_{q}\right)$

$\mathbb{C}(q)$

Example 2: Take again $e=$ full subcategory of $U_{q}\left(g l_{n}\right) \otimes$-generated by $\wedge^{0} V, \ldots, \Lambda^{n} V$ (continued) and their duals $\Lambda^{0} V^{*}, \ldots, \Lambda^{n} V^{*}$

For instance:

$$
\prod_{A^{2} v o v^{2} v a}^{v_{0} v a v}
$$

Such combinations are called webs, or MOY graphs:

A web (= MOY graph)

a dosed web
$\mathbb{C l}(q)$

$\mathbb{C}(q)$

Note:

Example 2: Take again $C=$ full subcategory of $U_{q}\left(g_{n}\right)$-generated by $\wedge^{0} V, \ldots, \Lambda^{n} V$ (continued) and their duals $\Lambda^{0} V^{*}, \ldots, \Lambda^{n} V^{*}$
We have more relations:

$$
\begin{aligned}
& \left\langle\underset{i+j+k}{b_{j+k}^{k}}\right\rangle=\left\langle\begin{array}{c}
i+j_{i}^{j} \\
i+j+k
\end{array}\right\rangle \\
& \left.\left\langle\begin{array}{c}
m+n \pm \\
m+n \\
m+n
\end{array}\right)\right\rangle=\left[\begin{array}{c}
m+n \\
m
\end{array}\right]\left\langle\lambda^{m+n}\right\rangle
\end{aligned}
$$

Theorem (Murakami-Ohtsoki-Yamada, 1998): these relations suffice to evaluate any closed web.

Theorem (Cautis-Kamnitzer-Morrison, 2014): the functor $W_{E E} b_{n} \rightarrow C$ is in fact an equivalence.

Coloring formula for web evaluation:
Let Γ be a coed web.
Definition: A coloring of Γ is an assignment of the edges to subsets of $\{1,2, \ldots, n\}$ ouch that:

- $k \sim \sim\left\{m, \ldots, m_{k}\right\}$

Example:

Let c be a coloring. For a pair of pigments $i, j \in\{1,2,3, \ldots, n\}$, let
$\Gamma_{i j}(c)=$ \{edges colored by $j\{\Delta$ \{edges colored by i, reversed $\}$
Define $\omega\left(\Gamma_{i j}\right):=$ signed $\#$ circles in $\Gamma_{i j}$

$$
\omega(c)=\sum_{1 \leqslant i<i j \leq n} \omega\left(\Gamma_{i j}\right)
$$

Write $\langle\Gamma, c\rangle=q^{\omega(c)}$
In the example:

$$
\omega\left(\Gamma_{2,4}\right)=2
$$

$$
\langle\Gamma, c\rangle=\Sigma_{q}
$$

Theorem (coloring formula for web evaluation)

$$
\langle\Gamma\rangle=\sum_{c \in \cot (\Gamma)}\langle\Gamma, c\rangle
$$

Corollary: $\langle\Gamma\rangle \in \mathbb{Z}_{\geqslant 0}\left[q, q^{-1}\right]$.
Cleo for knots,
nat so for webs
Categronfication?
Specifically: $L \rightarrow H_{*}(L)$ st.

$$
\langle L\rangle=\sum_{i}(-1)^{i} q \operatorname{din} H_{i}(L)
$$

3. Foams (via Robert-Wagner evaluation)

Foams can be thought of as cobordisms of webs. More precirely:
A g_{n}-pam is a finite 2 -dimensional $C W$ complex embedded in \mathbb{R}^{3} with a thickness function $\{2$-cells in $F\} \rightarrow\{1, \ldots, n\}$ such that the neighborhood of a point is homeomorphic to one of the following:

on a facet

Examples:

on a binding
-
 singles vertex

Remark: facets may have "decorations", symmetric polynomials in (thickness)-many variables. They behave multiplicatively: \square $=$ \square p.

Some motivation for what follows:
To a link we will associate a complex C_{*} (link) of graded modules over $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ Inspiration comes from the S_{3} case, worked out by Khovanov. Khoranov's choices were in torn inspirec by the δ_{2} case (Hhorarov homology).

- $s_{2}: C($ unlink $)=\operatorname{TQFT}($ unlink $)=\mathbb{Z}[x]^{\text {dy }} /\left(x^{2}\right)=H^{*}\left(C P^{1}\right)$ after shift, graded rank is $q^{-1}+q=[2]$
- 8_{3} : C (unlink)? It should have graded rank [3] so take $H^{*}\left(\mathbb{C} P^{2}\right)=\mathbb{Z}[x] /\left(x^{3}\right)$

- It should have three $\mathbb{Z}[x] /\left(x^{3}\right)$-matte structures:

$$
H^{*}\left(F l_{3}\right)=\mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}, x_{1} x_{2} x_{3}\right)
$$

Foam evaluation provides the "denominators" of these graded modules

Define colorings as with webs:

- $F_{i}=U$ facets containing i is an oriented surface

- $F_{i j}=F_{i j} \cap F_{i} \perp F_{i j} \cap F_{j}$, and there meet at circles which inherit an orientation:

Dense $\theta_{i j}^{+}$for the number of positive circles in $F_{i j}$
Degree of a foam:
Choose any coloring c and deqne $X_{n}(F)=\sum_{1 \leqslant i<j \leq n} X\left(F_{i j}\right)$. "Weighted Ever er claratatenstic"
Define the degree of F as $\operatorname{deg}(F)=-\chi_{n}(F)+2 \sum_{\text {pact }} \operatorname{dg}\left(P_{f}\right)$

Foam evaluation
Foam F ms $\langle F\rangle \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$
Robert and Wagner's idea: take inspiration from the coloring formula for web evaluation.
Denote $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and given $S \subset\{1, \ldots, n\}, X_{S}=\left\{x_{i}: i \in S\right\}$.

and finally: $\langle F\rangle=\sum_{c \in c(F)}\langle F, c\rangle$

Example: $n=3$,

$$
\begin{aligned}
& c=\left\{14 \Rightarrow\langle F, c\rangle=\frac{-x_{1}^{3}}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} \quad s(F, c)=1\right. \\
& c=\{2\} \Rightarrow\langle F, c\rangle=\frac{x_{2}^{3}}{\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)} \quad s(F, c)=2 \\
& c=\{3\} \Rightarrow\langle F, c\rangle=\frac{-x_{3}^{3}}{\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)} \quad s(F, c)=3
\end{aligned}
$$

thickness 1

$$
\langle F\rangle=\frac{-x_{1}^{3}\left(x_{2}-x_{3}\right)+x_{2}^{3}\left(x_{1}-x_{3}\right)-x_{3}^{3}\left(x_{1}-x_{2}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{2}\right)}
$$

$$
\begin{align*}
\langle F\rangle & =\frac{-x_{1}^{3}\left(x_{2}-x_{3}\right)+x_{2}^{3}\left(x_{1}-x_{3}\right)-x_{3}^{3}\left(x_{1}-x_{2}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)} \\
& =\frac{-x_{1}^{3} x_{2}+x_{1} x_{2}^{3}-x_{2}^{3} x_{3}+x_{3} x_{2}^{3}-x_{3}^{3} x_{1}+x_{1} x_{3}^{3}}{x_{1}^{2} x_{2}-x_{1}^{2} x_{3}+x_{2}^{2} x_{3}-x_{2} x_{3}^{2}+x_{3}^{2} x_{1}-x_{3} x_{1}^{2}} \\
& =-\left(x_{1}+x_{2}+x_{3}\right) \quad \text { (!) } \tag{!}
\end{align*}
$$

Example:

$$
\begin{aligned}
>= & \frac{-x_{1}^{N}\left(x_{2}-x_{3}\right)+x_{2}^{N}\left(x_{1}-x_{3}\right)-x_{3}^{N}\left(x_{1}-x_{2}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)} \\
& -\operatorname{det}\left(\begin{array}{lll}
x_{1}^{N} & x_{1} & 1 \\
x_{2}^{N} & x_{2} & 1 \\
x_{3}^{N} & x_{3} & 1
\end{array}\right) \\
= & \frac{\text { Vandermonde }}{y}=-S_{n-2,0,0}\left(x_{1}, x_{2}, x_{2}\right)=-\sum_{\text {injexe-i-2 } x_{1}^{i} x_{3}^{j} x_{3}^{K}}
\end{aligned}
$$

Remark: $\left\langle\underset{\cdot x^{c}}{\overrightarrow{\cdot x^{a}}}\right\rangle=S_{a-1, b-1, c}$, among many combinatorial relations.
It is almost immediate that $\langle F\rangle$ is a symmetric rational function
Fact: $\langle F\rangle$ is in fact a polynomial. Proof relatively painters bot omitted.
4. A foamy link homology

We first define a functor $F:$ Foam $_{n} \longrightarrow \mathbb{Z}[x]-$ geod
(webs, fans bitheon them) $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \log x=2$
On objects:

$$
\Gamma \longmapsto W_{n}(\Gamma) / \operatorname{Ker}^{(}\left((\cdot, \cdot)_{n}\right)
$$

where: $W_{n}(\Gamma)=$ free moduk with basis foams with boundary $\varnothing \rightarrow \Gamma$

$$
W_{n}\left(W^{\prime}\right)=\mathbb{Z}[x] \cdot\{
$$

and $\quad(F, G)_{n}=\langle\bar{G} \circ F\rangle$

On morphsms: $F: \Gamma_{1} \rightarrow \Gamma_{2}$ gives $W_{n}\left(\Gamma_{1}\right) \rightarrow W_{n}\left(\Gamma_{2}\right)$ $G \longmapsto F \circ G$

Note of $L \in W_{n}\left(\Gamma_{4}\right)$ is in $\operatorname{Ker}\left((\cdot ;)_{n}\right)$ then $F \cdot L \in \operatorname{Ker}\left((\cdot ;)_{n}\right)$
This is the so-called universal construction. Works in much greater generality,

Theorem: $F_{n}(\Gamma)$ is a free graded $\mathbb{Z}[x]$-module of graded rank $\langle\Gamma\rangle$.
Proof: We denote grading shifts as: $q^{a} \cdot M=M(a)$. One shows using the evaluation that:

$$
\begin{aligned}
& \mathscr{F}_{n}(\varnothing) \simeq \mathbb{Z}[x]
\end{aligned}
$$

Now any web redress to ϕ using finitely many of these relations. At each step we obtain a projective module.
Projective modules or $\mathbb{Z}[x]$ are free The relations are those for web evaluation so we get $\operatorname{grk}(F(\Gamma))=\langle\Gamma\rangle$. o

What about the knots?
Recall: we can rewrite the crossings as:

$$
\left.\langle X\rangle=\left\langle Y_{2}\right\rangle-q^{-1}\left\langle\prod_{1}\right\rangle\right\rangle, \quad\langle X\rangle=\left\langle Y_{1}\right\rangle-q\left\langle\prod \prod_{1}\right\rangle
$$

As in thacana homdogy, we categonfy this as complexes, using F_{n} as a sort of TQFT:

$$
\begin{aligned}
& F_{n}\binom{Y_{1}}{1}=\underline{F_{n}\binom{Y_{1}}{\Lambda_{1}}} \longrightarrow q^{-1} F_{n}\left(\prod_{1} \prod_{1}\right) \quad F_{n}\binom{\lambda_{1}^{\prime}}{1}=q F_{n}\left(\prod_{1} \prod_{1}\right) \longrightarrow F_{n}\left(\begin{array}{l}
Y_{1}^{\prime} \\
\Lambda_{1} \\
\Lambda_{1}
\end{array}\right)
\end{aligned}
$$

So the complex associated to an oriented link diagram is

$$
C(L)=\bigotimes_{\text {crossings } x}(\text { Complex at } x)
$$

Theorem: This is an invariant of oriented links that categories the sly link polynomial. (up to overall grading supt) (It's considered up to homentopy)

A generalization for free
In fact we can express any crossing as:

$$
\left\langle Y_{b}\right\rangle=\sum_{k=m \times(0, b-a)}(-1)^{k-b} q^{k-b}\left\langle\prod_{a}^{b} k=\hat{k}\right|
$$

So we can form the more general Richard complex:

$$
\begin{aligned}
& \ldots \rightarrow q^{1-a} F_{n}\left(\prod_{a}^{b} \frac{1}{b+1-a} \oint_{b}^{a}\right) \longrightarrow q^{a} F_{n}\left(\prod_{a}^{b} \prod_{b-a}^{a}\right)
\end{aligned}
$$

(Similarly for negative crossings)

$$
C_{*}(L)=\bigotimes_{\text {crossings } x}(\text { Complex at } x)
$$

Theorem: This is an invariant of colored oriented links that categories the cobred sen link polynomial. (up to overall grading suft) (It's considered up to homotopy)
5. A cool application

Fact: $H_{T}^{*}\left(F l_{n}\right)=\frac{\mathbb{Z}\left[T_{i}, X_{i}\right]}{P\left(X_{i}\right)-P\left(T_{i}\right), P \text { sym poly }}$ and $H_{T}^{*}\left(F l_{n}\left(a_{1}, \ldots, a_{n}\right)\right)=H_{T}^{*}\left(F l_{n}\right)^{S_{a_{1}} x \ldots x S_{a_{n}}}$ $\mathbb{C}^{a_{1}} \subseteq \mathbb{C}^{a_{1}+a_{2}} \subseteq \ldots \mathbb{C}^{a_{1}+\ldots+a_{n}}$
Proposition (Robert-Waguev):

The isomorphism is given by:

$$
\prod_{i=1}^{k} s_{\lambda_{i}}\left(X_{a_{i+1}+1}, \ldots, X_{\left.a_{i+1}\right)}\right) \mapsto
$$

This can be used to compute the structure constants for $H_{T}^{*}\left(F l_{n}\left(a_{1}, \ldots, a_{n}\right)\right)$ as a ring:

Thank you!
Questions?

