The dihectral cathedral

1. Review of BSBim and one-cobr calculus
$B S B$ in for $\left(w_{1} S\right)=\left(S_{2}, 15 s\right)$:

$$
S_{2} \subset \mathbb{R}_{\alpha_{s} \mapsto-\alpha_{s}} \text { mo } S_{2} \subset \mathbb{C R}=\mathbb{R}\left[\alpha_{s}\right](\log \alpha=2)
$$

Objuts: $B S(\underline{1})=R$
(up to ism) $B S(\Sigma)=R_{\mathbb{R}\left[x_{1}\right]} R(1)=B_{s}$

$$
B S\left(\underline{s}^{\kappa}\right)=B_{0} \bullet \ldots \cdot B_{1}
$$

Morphisuss: maps \& RGas -bimades of any suffe lagree Monoidal stactive: ©

Naw B_{s} is a Frobmis aycbua djeck, meaning there are maps $r, \eta, \delta, \varepsilon$:

\square deg. 0

$\operatorname{deg}-1$
deg 1

mo
dey -1

mos
$\operatorname{deg} 1$

These satisfy the relations
Axions of strict monoical category mo Rectilmear isotopics

Unit
mo

$=$

Frobenius associalinty uns

We defied

$$
:=
$$

Frobenius

Relations imply: isotopic diagrams represat equal morphisms.

For $f \in R$, we aso have

These satiofy
Meltipiction \quad mo $g=g g$

Keyble

Baricll

Fwion
me

Pdanumid Sile

$$
\min \quad|g|=\mid g \quad \text { o } j \in R^{3}
$$

 $H_{B S}(s) \simeq B S_{B i m}\left(S_{2}, 1 s s_{1}\right)$ is an equidace of ategonics "one-cor digrammate Hecke cabopy

Today: consider $(w, s)=\left(D_{2 m},\{s, t\}\right) \quad($ possibly $m=\infty)$

Dyakin diagram

$$
\left(\alpha_{s} ; \alpha_{t}\right)=-\frac{\cos \pi}{m_{t}}
$$

$\left(m=3 \leadsto A_{2}\right)$

We define $H_{B S}=H_{B S}(W, S)$ so that $H_{B S} \xrightarrow{\sim}$ BSBim is an equiratace of categories.

2. Universal diagrams

Consider the diagrammatic category with objects $\left\{\cdots \ldots \bigcup_{n \geqslant 0}\{0,0\}^{n}\right\}$ and with morphisms coming from $H_{B S}(s)$ and $H_{B S}(t)$, that is, morphisms like

These are allied universal diagrams, and the resting category is the "universal 2 -color diagrammatic. Hear category" Denote this agony by $H_{8 s}^{0}(s, t)$.

Theorem: The functor $H_{s s}^{\infty} \rightarrow \mathbb{B S B}$ in, for (W, S) infinite dihedral, is an equirachce of categories
Idea (same for all (W, s))
Essentially surjative: obvious:
Full: it can be checked dycbraically that every mopphism of Butt-Sanelson bimalles comes from adiagram (general lax: Lictedisky's light Paves)
Faithfel it suffices to show that Ham "dimensions" agree with sizes of (diagrammatic) basis of Ham spaces

How to lind these dimensions?
3. Interlude on Soergel's Hom formula.

Def: A standard bimodal is an R-bimodle of the form R_{x} for $x \in W$, where $R_{x}=R$ with twitted action $r \cdot m \cdot r^{\prime}:=r m \times\left(r^{\prime}\right)$.

Remark: - $R_{x} \otimes R_{y} \cong R_{x y}$

- $R_{x}=R \cdot 1 \cdot R$
- R_{x} is indecomposable
- $H_{m o n} \cdot\left(R_{x}, R_{y}\right)= \begin{cases}R & x=y \\ 0 & 0 / \omega\end{cases}$

Def. StdBim is the category of standard bimodke, their shifts and fits \oplus
Rok: $[S t d \operatorname{Bim}]_{\oplus} \cong \mathbb{Z}\left[v^{ \pm}\right] W$

Recall the cements. $c_{s}=\frac{1}{2}\left(\alpha_{s} \otimes 1+1 \otimes \alpha_{s}\right), \quad d_{s}=\frac{1}{2}\left(\alpha_{s} \otimes 1-1 \otimes \alpha_{s}\right)$. Recall $\left\{101, c_{s}\right\},\left\{1 \otimes 1, d_{s}\right\}$ are basis for B_{s} as a left or right R-moduk: In R-gbim we have

$$
\begin{align*}
& \begin{aligned}
0 \rightarrow R_{s}(-1) & \longrightarrow B_{s} \xrightarrow{\mu} R(1) \longrightarrow 0 \\
1 & d_{s}
\end{aligned} \\
& \mathrm{fog} \longmapsto \mathrm{fg} \\
& \begin{aligned}
0 \rightarrow R(-1) & \longrightarrow B_{s} \quad \xrightarrow{\mu} R_{s}(1) \longrightarrow 0 \\
1 & \longrightarrow c_{s}
\end{aligned} \\
& f \circ g \longmapsto f \cdot s(g)
\end{align*}
$$

Prof: For (Δ), we need to check that the first map is well-clefined. Now $r \cdot m \cdot r^{\prime} \mapsto f\left(r m s\left(r^{\prime}\right)\right)=r m s\left(r^{\prime}\right) d_{s}=r m d_{s} r^{\prime}$. The kernel of μ is obviously samined by α_{s} of $-1 \otimes_{\alpha_{s}}$. cementation in
the fort
alk
The compotation for (∇) is analogous, using $f: c_{s}=c_{s} f$. B
We thus have $B_{s}=\frac{R(1)}{R(-1)}$, a filtration with subquotionts in StAin. This gives "standard filtrations" for every
Serge bimochle: Sorrel bimodb:

Application: Filtration for $B_{s} B_{t}$

$$
B_{s} B_{t}=\frac{R(2)}{R_{s} \otimes R_{t}} \frac{\frac{R(2)}{R_{s}}}{R_{s}(-1) \otimes R_{t}(-1)}=\frac{\begin{array}{l}
\text { order respects } \\
\text { Brat order }
\end{array} \quad \text { inv " } \Delta \text {-titration" }}{R_{s t}(-2)} \quad \downarrow
$$

(sand 10007
Theorem: For a fixed enumeration of W respecting the Bruhat order, there exists a unique Δ-filtration, and the graded multiplicities of each standard bimodule are indep of the enumeration:

$$
\text { Example (continued) } \begin{aligned}
& \frac{R(2)}{R_{s}} \\
& \frac{R_{t}}{R_{s}\left(B_{s} B_{t}\right)}=1 \cdot v^{2} \\
& h_{s}\left(B_{s} B_{t}\right)=1 \\
& h_{t}\left(B_{s} B_{t}\right)=1 \\
& h_{s t}\left(B_{s} B_{t}\right)=1 v^{-2}
\end{aligned}
$$

Now we can define $c h_{\Delta}(B)=\sum_{x \in w} v^{P(x)} h_{x}(B) \delta_{x}$
Examples

$$
\begin{aligned}
& B_{s}=\frac{R(1)}{R_{s}(-1)} \sim \sim_{s}=v \\
& h_{s}=v^{-1} \\
& h_{1}=v^{2} \\
& B_{s} B_{t}=\frac{R(2)}{R_{s}} \begin{array}{l}
h_{s}=1 \\
h_{t}(-2) \\
h_{t}=1 \\
h_{s t}=v^{-2}
\end{array} \quad \text { wo } \quad d_{\Delta}\left(B_{s}\right)=v^{1} \cdot v^{-1} \cdot \delta_{s}+v \cdot \delta_{1}=\delta_{s}+v \\
& h_{\Delta}\left(B_{s} B_{t}\right)=v^{2} v^{-2} \delta_{s t}+v \delta_{s}+v \delta_{t}+v^{2}=\delta_{s t}+v \delta_{s}+v \delta_{t}+v^{2}
\end{aligned}
$$

Remark: $c_{\Delta}\left(B_{x}\right)=\operatorname{ch}_{\nabla}\left(B_{x}\right) \quad \forall x \in W$: Seergel's conjecture (now theorem) says $\operatorname{ch}\left(B_{x}\right)=b_{x}$
Back to Hon spaces
Theorem (Sorrel 2007) let B, B^{\prime} be Soergel bimoulules. Then the graded Ham How Bim $^{\circ}\left(B, B^{\prime}\right)$ is free as a left graded R-mode and as a right graded R-modik, of graded rank. (ch $(B), \operatorname{ch}\left(B^{\prime}\right)$).

Examples:

$$
\text { wk } \operatorname{Hom}^{\bullet}\left(B_{s}, R\right)=\left(b_{s}, 1\right)=\varepsilon\left(\bar{b}_{s} \cdot 1\right)=\varepsilon\left(\delta_{s}+v\right)=v \sim R^{\frac{1}{\operatorname{deg} 1}}
$$

ㄴ. $\operatorname{Hom}^{\circ}\left(B_{s}, B_{s}\right)=\left(b_{s}, b_{s}\right)=\left(1, b_{s}^{2}\right)=\left(1, v b_{s}+v^{-1} b_{s}\right)=v^{2}+1 \sim R \cdot 1$

wk $\operatorname{Hom}^{-}\left(B_{s} B_{t}, B_{t} B_{s}\right)=\left(1, b_{s} b_{t} b_{s} b_{t}\right)=v^{4}+2 v^{2}$

stst +vsts +vst$+v^{2} s t+v s^{2} t+v^{2} s^{2}+v^{2} s t+v^{3} s+v t s t+v^{2} t s+v^{2} t^{2}+v^{3} t+v^{2} s t+v^{3} t+v^{3} s+v^{4}$
no

If $m=2$ (ie typ $A_{x} a_{1}$) we have $b_{s} b_{t} b_{s} b_{t}=\left(\delta_{s}+v\right)^{2}\left(\delta_{t}+v\right)^{2}=\left(v+v^{-1}\right)^{2} b_{s} b_{t}=\left(v+v^{-1}\right)^{2} \cdot\left(v^{2}+v \delta_{s}+v \delta_{t}+\delta_{s t}\right)$

$$
v^{4}+2 v^{2}+1
$$

This sygents that we need a new marphism.

Def: Define the $2 m$-valat morphism as :

$$
\text { E.S: for } m=2 \text {, me have }
$$

Theorem: Delving $H_{B S}$ as above, plus the $2 m$-valet morphism, and impoong three relations that we will re e later, we have an equivalence of categories $H_{B S} \xrightarrow{\sim} \mathbb{B S B i m}$ for (W, S) pinite dihedral Next, we motivate the $2 m$-valet vertex and the new relations.
4. The two-color Temperley-Lieb category

Def: Temperley-Licb monoidal category \mathcal{L}_{δ} is given by

- Objects: $\{\because \ldots 1 n \geqslant 04$
- Morphisms $\mathbb{z}[\delta] \cdot$ UT $\}$ (rosingless medians), subject to
- Mopier structures: concatenation.
$=\delta$.

Reek: specializing to $\delta=-\left(q+q^{-1}\right), \mathcal{L}_{\delta} \cong$ Fund $\left(U_{5}\left(P_{2}\right)\right)$

$$
\delta=-2, \quad \mathcal{L}_{s} \cong \text { Find }(\operatorname{sl}, \mathbb{C})
$$

Def: 2-cdered Temperley-Licb 2 category $2 \mathcal{L}_{\delta}$ is giver by

- Objects: $\quad\{-,-\}$
- 1 -morphine: $\{\because-1 n \geqslant 04$

\square
○.. \square

Vertical composition and horizontal composition as usual

$$
=\bigcap
$$

Now specialize $2 \mathcal{L}_{\delta}$ to $\delta=a_{s t}:=-2 \cos \left(\frac{\pi}{m_{s t}}\right) \quad\left(=-\left(q_{q}+q^{-1}\right) / o r, q=\sqrt{2 m} \sqrt{1}\right)$
Then we have a functor

$$
\Sigma 2 \mathcal{L}_{\text {att }} \longrightarrow \mathbb{B} S_{\text {Bim }}
$$

sanding,$--\longmapsto$ "uncle object"

$$
\because \mapsto B_{r} \oplus B_{t} \oplus \otimes B_{s}
$$

(this functor factors through $H_{B S}^{\infty}$)

Proof that this is well-defred:

Two similar observations:

- In Fund, we have an idempotat map $V^{\infty n} \rightarrow L(n) \longrightarrow V^{\text {on }}$
- In $B S S_{\text {Bim }}, w_{0}=\underset{m}{s t}$ s is the longest element $\Rightarrow B_{s} B_{t} \ldots B_{s} \rightarrow B_{w_{0}} \hookrightarrow B_{s} B_{t} \ldots B_{s}$

Both of these phenomena can be explained using Temperley-Lieb:
Denote $T_{n}=\operatorname{End}_{\mathcal{d}_{\delta}}(\cdots \cdots)$
Prop (Jones-Wenot elements) There is a unique dement $J W_{n} \in T L_{n}$ satisfying:

- Capping or cupping any two strands (when possible) suds the element to 0 .
- The coeficiat of $i d_{n} \in T L_{n}$ in $J W_{n}$ is 1

Furthermore, $J W_{n}$ is idempotent.
Examples

$$
\begin{aligned}
& J w_{2}=| |-\frac{1}{\delta} \cap \\
& J w_{3}=\left|\left|\left|+\frac{\delta}{\delta^{2}-1}\right| \begin{array}{ll}
V+\frac{\partial}{\delta^{2}-1} & n\left|+\frac{1}{\delta^{2}-1} \cap\right|
\end{array}\right)\right.
\end{aligned}
$$

There are entirely analogous 2 -colored $J W_{n}$'s:

$$
J W_{2}=\left\lvert\,-\frac{1}{\delta} \cap\right.
$$

Now its image in $H_{B S}^{\infty}$ is $\left\|\|-\frac{1}{a_{a}} \prod_{i}\right.$. This is still an idempotent!
In fact mapping this to a morphism in $B S B$ Bim, we have land $B_{s} B_{t} B_{s}=B_{s} \oplus \operatorname{lm}(J N)$

$$
=B_{s} \oplus B_{s t s}
$$

Upshot: diagrammatics have provided us with the explicit map reediting B_{s} ts $\in B_{s} B_{B} B_{5}$!
In fact, we have the following

Back to the $2 m$-valent morphism
Notice that in BSBim, $\frac{s t s . . . S}{m}=\frac{t_{m} t \ldots}{t} \Rightarrow$ this equals the benet elcmat

$$
\Rightarrow B_{w_{0}} \subseteq B_{\oplus} \subseteq B_{t} \ldots B_{s} \text { and } B_{w_{0}} \subseteq B_{t} B_{s} B_{t} \ldots B_{t},
$$

so we have. Btr...s $\rightarrow B_{\text {moo }} \hookrightarrow B_{\text {tot } \ldots t}$. This is the map that

What about the three relations?

Cydiaty:

(for all m, both parties, cobrsuups)

2- color associativity

(for all m, both panties, cobra sumps)

Eliar-Jones-Waral:

Theorem: there are enough
6. A word on more colas.

One can play the same game for Coxeter groups with 3 generators. There are 4 passible Coxeter groups: $A_{3}, B_{3}, A_{1} \times I_{2}(\mathrm{~m}), H_{3}$.

Type A_{3}

The B_{3}

Type $A_{1} \times I(m)$

Type H_{3}

however, despite considerable effort, we have not been able to compute the lower terms which appear. The question of what these lower terms are could in principle be decided by computer, however the computation is impossible with our current
algorithms and technology. This is the caveat mentioned earlier: we do not have a completely explicit presentation of the category $\mathbb{B S B i m}$ when W contains a parabolic subgroup of type H_{3}, knowing this Zamolodchikov relation only in the rough form above.
These relations wald suffice In fact 4 -color relations are not needed!
Type A_{3} :

was Maps in Sim lexplaining the Zamolodhilov relation)

Such cycles in Coxeter groups are made up of disjoint braid relations and z relations from rank 3 parabolic
 equal "mod lower terms".

Next: light leaves?

