Outline:

- Prethyotic suos
- Bacz-Moeller-Trimble '21
- Questions for the audrace

1. Phethystic substitutions

Let $K=Q(q)$ and Λ_{q} the ring of symmetric functions ore K.

$$
\left.\Lambda_{q}=k\left[p_{1}, p_{2}, \ldots\right] \quad{ }_{\text {poor sums }} p_{n}=x_{1}^{n}+x_{2}^{n}+\ldots\right]
$$

Let $k_{b}[x]=$ banded power series in x_{1}, x_{2}, \ldots.
Let $E \in K_{b}[X]$. Define $p_{k}[E]$ as the series E where we replace $x_{i} \mapsto x_{i}^{k}$ and $q \mapsto q^{k}$. This can be extended to a Q-alyebra homomophism

$$
\begin{aligned}
& \Lambda_{q} \rightarrow k_{b}[X] \\
& f \mapsto f[E]
\end{aligned}
$$

This is called the plethyptic substitution of E into f. Note that of $E \in \Lambda_{q}$, then $f[E] \in \Lambda_{q}$.
Example: $\dot{h}_{2}\left[\frac{x_{1}+x_{2}}{1-q}\right]=\frac{1}{2}\left(p_{1}^{2}\left[\frac{x_{1}+x_{2}}{1-q}\right]+p_{2}\left[\frac{x_{1}+x_{2}}{1-\frac{q}{q}}\right]\right)=\frac{1}{2}\left(\frac{x_{1}+x_{2}}{1-q}\right)^{2}+\frac{1}{2} \frac{x_{1}^{2}+x_{2}^{2}}{1-q^{2}}=\frac{h_{2}\left(x_{1}, x_{2}\right)+q e_{2}\left(x_{1}, x_{2}\right)}{(1-q)^{2}(1+q)}$
Several important substitutions:

- If $E=X=x_{1}+x_{2}+\ldots$, then $f \mapsto f[x]$ is the identity.
- If $E=x_{1}+\ldots+x_{n}$, then $f \mapsto f[E]$ is the natural map $\Lambda_{q} \rightarrow K\left[x_{1}, \ldots, x_{n}\right]$ sn
- If $E=-X$, then $f \mapsto f[-x]$ sends $s_{\lambda} \hookrightarrow s_{\lambda}$
- If $E=y=y_{1}+\ldots$ (a new ex of variates) then have $\Delta^{+} \Lambda \rightarrow \Lambda_{0} \Lambda \Delta^{x} \Lambda \rightarrow \Lambda \otimes \Lambda$

$$
f \mapsto f[x+y] \quad f \mapsto f[x y]
$$

They often simplify notation:

- Let $\Omega[X]=\sum_{n \geqslant 0} h_{n} \in \hat{\Lambda}_{q}$. The "Cauchy identity" reads $\Omega[X Y]=\sum_{\lambda} s_{\lambda}(X) s_{\lambda}(y)$
- Macdonald's q, t-Hall inner product is given by $\left\langle p_{\lambda}, p_{r}\right\rangle_{q, t}=\delta_{\lambda \mu} z_{\lambda} \prod_{i} \frac{1-q^{\lambda i}}{1 t^{\lambda i}}$

Plethptically, this reads $\langle f, g\rangle=\left\langle f, g\left[\frac{1-q}{1-t}\right]\right\rangle$

$$
\begin{aligned}
& \text { Product: } \\
& \langle,\rangle=\text { Hall inter product } \\
& t=0 \text { ? } \\
& \left.{ }_{q}=0{ }^{\langle }\right\rangle_{t}=\langle(-),(-)[x(1-t)]\rangle \quad \text { Hhallithewod phys } \quad \nabla_{t}^{a}(g)=\left.\delta\left[X+\frac{(1-t)}{z}\right] \Omega[-z X]\right|_{z^{c}} \quad \nabla_{t}^{0}\left(P_{\lambda}\right)=q^{\lambda_{1}+1} P_{\lambda} \\
& \langle,\rangle_{q, t}=\left\langle(-)(-)\left[x \frac{1-t}{1-q}\right\rangle \quad \text { Macorond polys } \quad \nabla_{q, t}^{a}(f)=\left\{\left.\left[x+\frac{(1-t)(1-q)}{z}\right] \Omega[-z x]\right|_{z^{a}} \quad \nabla_{q+1}^{0}\left(H_{\lambda}\right)=(1-t) \sum_{i=1}^{\infty} q^{\text {rit }} t^{i-1} H_{\lambda}\right.\right.
\end{aligned}
$$

2. Schur functors (revisited) Bace-Moeller-Trimble (2021)

$\left(\cdot, *, \Delta^{+}\right)$: "Hopf ring" $=$ring doject in the category of corings $\rightarrow \Delta^{x}$ and $*$ don't commote
$\left(\cdot, \Delta^{+}, \Delta^{x}\right)$: "biring" $=$ coring object in the category of rings \rightarrow Can be defined in terms. of plettyystic sabstitutions
L Equialently: $\left(\circ, \Delta^{+}\right)$Hof of gi, antipose: $\{[-x\}$
($0, \Delta^{x}$) baty
Δ^{x} codithiotes ovier Δ^{+}
\rightarrow Equiblently: a ring object in alfine schemes
$\left(\cdot, \Delta^{+}, \Delta^{x}, 0\right):$ "plethory" $=$ monoid in the category of birings \rightarrow. What they categonfy
Another example: $\mathbb{Z}[x]: \Delta^{+}(p(x))=p(x)+p(y), \Delta^{x}(p(x))=p(x y), p \circ q(x)=p(q(x))$.
Note: By Yoneda, one can define a biring as a ring B such that $H_{R=m}(B,-)$ has a fift

For instance, $\Phi=1_{\text {Ring }}$ is representable by $\operatorname{Hom}(\mathbb{Z}[x],-)$, hence $\mathbb{Z}[x]$ is a biring
Since $1_{\text {Ring }} \circ 1_{\text {Ring }}=1_{\text {Rng }} \mathbb{Z}[x]$ is a monoid in Biring, i.e. a pethory:
The abore can be replicated with rigs instead, aka seminings
Now let 2-Rig be the 2-category of linear symmetric monoidal additie tarabion categones, functors and nat tranpfs Then a 2-birig B is a 2 -Rig such that there is a lff

A 2 -pletrory is a "precocomonoid" in 2-Bing, roughly a 2 -Bing s.t $\Phi \circ \Phi \cong \Phi$

Example: let Schor be the free 2-Rig on one element E, so it has objects $E^{\text {on }}$ as well as

$$
S^{\lambda}(E):=\left(E^{\infty n}, \pi_{\lambda}\right) \text {. Morphisms: Mom }\left(E^{\infty n}, E^{\infty n}\right)=\left\{\begin{array}{cc}
\mathbb{C}\left[S_{n}\right] & n=m \\
0 & n \neq m
\end{array}\right.
$$

Fact: Schur represents the identity 2 -functor, so Schur is a 2 -plethory: It decategroifies to the plethory structure on Λ.
Description of the 2 -plethory structure?
Abstract Schur functor
Definition: a psevdonatural traniformation from $U: 2-R_{i g} \rightarrow C a t$ to itself
Wite $[v, w]=$ cat of preudonat tranifs + modifications, and wite $u \times u: 2-R i g \times 2-$ Rig \rightarrow Cat \times Cat
Theorem (Bacz-Moeller-Trimble, 2021). The category Sch is equivalent to $[U, U]$.
Explicitly, the 2-plethory structure on Schur can be carried over to $[u, u]$, and in particular:

3. The annular category Gorky-Wedrich (2019)

Let $S_{\text {chor }}^{q}$ be the free graced 2-Rig generaled by an object E and a morphism $x: E \rightarrow q^{-2} E$.

- $\operatorname{Hom}\left(q^{k} E^{\text {on }}, q^{\rho} E^{\text {on }}\right)=\mathbb{C}\left(x_{1}, \ldots, x_{n}\right) x \mathbb{C}\left(S_{n}\right) \quad$ "dotted permutations" $\sigma=x, x=\phi$
- Indecomposabtes: $q^{k} \delta^{\lambda}(E)$
$R_{m k}: S_{\text {chur }}^{q} \cong \bigoplus_{n}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \times \mathbb{C}\left(S_{n}\right)\right)$-gmod

$$
\begin{aligned}
& \text { Link invariants } \\
& \beta \longmapsto \hat{\beta} \longmapsto i(\hat{\beta}) \in S k^{+}(A)^{=} \text {=pssoninted links on } A \text {, mod Hecke: } x-\lambda^{n}=\left(q-q^{-1}\right) \uparrow \uparrow \\
& \longmapsto f_{\beta} \in \Lambda_{q} \quad \text { map: } x \mapsto \sum_{\lambda} \operatorname{Tr}\left(x, V_{\lambda}\right) s_{\lambda} \quad \text { Fart (Truaev, } 188 \text {): } S k^{+}(A) \cong \Lambda_{q}
\end{aligned}
$$

Rimk: pethysticaly, the δ_{l}-link polynomial can be sotained as $\beta \mapsto \hat{\beta}$ (in annless) $\mapsto f \mapsto f\left[\frac{q^{n}-q^{-N}}{q-q^{-1}}\right]$ the HOMFLY: $f \mapsto f\left[\frac{a-a^{-1}}{q-q^{-1}}\right]$

Link homolegy
Gien X, cansund it to $X \rightarrow q^{-1} \uparrow \uparrow$ "Ridard complex"
$\beta \mapsto$ tenor of Rickard complexes
Can do this for annclar braids, and get a complex in
Theorem (Queffec-Rore, 18): Kar(AFoam ${ }^{+}$) \cong Schur $_{q}$

$$
E \mapsto \odot, \quad x \mapsto \infty
$$

Rmk: any graded functor Schur $\rightarrow e^{\text {دadditive }}$ yields a link mavaiant, eg:

- $E=\mathbb{Z}[a] / a^{2}, x=a \rightarrow$ Khovanov homology
- $E=Z[a] / a^{2}, x=0 \leadsto$ Ammar Khovanov homology
- $E=Z[a] / a^{n}, x=a \sim$ Khovanov Roransky

Theorem (Gorsky-Wedrich, 19): $\bigoplus_{n \geqslant 0} \operatorname{Kar}\left(\operatorname{Tr}_{0}\left(\right.\right.$ SBimn $\left.\left._{n}\right)\right) \cong$ Schurq

One of their main resets is computing the "annular evaluations of braids such as the half -twist. In Λ_{q}, this is:

$$
Y X_{X} \mapsto(-1)^{-1} \frac{h_{n}\left[\left(q^{-1}-q\right) X\right]}{q^{-1}-q}
$$

To categonify this, they categonify the map $f \mapsto \frac{f\left[\left(q^{\prime}-q\right) x\right]}{q^{-1}-q}$, using "aline extensions"

Affine extension: Given C graded, let $e[t]=$ Objects: $F[t]$ for $F \in E$
Then, consider the functor $\pi^{*}: e \rightarrow e[t]$

$$
\begin{aligned}
& F \mapsto F[t] \\
n_{*}: & e[t] \rightarrow e \\
& F[t] \mapsto F \otimes \mathbb{C}[t] \cong \bigoplus_{\geqslant 20} q^{2} F
\end{aligned}
$$

$$
\begin{aligned}
& f \longmapsto f\left[X\left(q^{-1}-q\right)\right] \longmapsto \frac{f\left[X\left(q^{-1}-q\right)\right]}{q^{-1}-q} \\
& F \longmapsto F(K(E, x)) \longmapsto \pi_{*}(q F(K(E, x)))
\end{aligned}
$$

$$
\left(\begin{array}{l}
x_{x}^{-t}-x_{1}
\end{array}\right) E^{\theta^{2}[t]}\left(x_{1}-t\right)^{\left.-x_{2}-t\right)}
$$

Compare with: $\frac{p_{1}^{2}\left[X\left(q-q^{-1}\right)\right]}{q-q^{-1}}=\left(q-q^{-1}\right) \cdot p_{1}^{2}[X]$.
4. Questions

1. Does $\operatorname{Hom}\left(F, G\left[X\left(1-q^{2}\right)\right]\right)$ category $\langle 1\rangle_{q}$?
2. Can one express Hall-Lithewood polys in this context?

Answer (Eugene): 1. Yes!
2. Undear. A bit tactoloyrially:

Fact: $H L$ poly $P_{\mu}=q c h H^{*}\left(B_{\mu}\right)$, and $H^{*}\left(B_{\mu}\right)=C\left(x_{1}, \ldots, x_{\mu}\right] / I_{\mu}$
Take a free res of I_{μ}, and replace $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ by $E^{\infty n}$. The resisting complex in $K^{\natural}\left(S_{\text {chur }}\right)$ categories P_{μ}

Question 3 (Eugene): can one reinterpret these in terms of SSBins? Resolutions don't need to be free..
$L O$ a complex in $K^{b}\left(\right.$ foam $\left._{\infty}^{+}\right)$?
Question 4: can one characterize HL complexes in terms of Home k^{b} ? Can one prose their pontinty?
Finally, Khovanov introduced a diagrammatic category It that fits in the following picture:

This has objects $\uparrow\llcorner\uparrow \downarrow \cdots \downarrow$ and it's Karobian, so one has Schor functors

that were shown by Gonzalez to categraify the Boson-Fermion correspondence, roughly an action of the Clifford algebra on Λ :

These are actually categorified Bernstein operators!
Question 5 : is there a (graded?) Heisenberg category that acts on Schurq s. one can define categnonfied Sing operators? The objects might be HL complexes. The case of ∇_{t} wald already be interesting since H_{μ} is an eigenfunction of ∇_{t}^{0}. auth eigenvalue $q^{\mu+1}$
Question 6: can any of this be done for Macdonald polynomials? (Explain Garsia-Haiman modules of there's time).

