The actionionic projective plane OP^8 and map $S^{13} \rightarrow S^8$ with Hopf invariant 1. The actionionic projective plane OP^8 and map $S^{13} \rightarrow S^8$ with Hopf invariant 1.
Fomenko-Fuchs isn't too detailed as I'll be following in addition a note on this subject by Malte Lockmann.
a construction of the actionicns: the octonicns are a particular instance of a general construction. If $(A, \cdot , *)$ is some normed R-algebra with a conjugation, then A^* can be made into a normed R-algebra with a conjugation by setting $\cdot (a, 5) \cdot (c, d) = (ac - d^*b, da + bc^*)$ $\cdot (a, 5) = \sqrt{ \cdot a ^2 + b ^2}$ $\cdot (a, 5)^* = (a^*, -5)$ Examples: $A = IR \Rightarrow A^2 \cong C$. $A = C \Rightarrow A^2 \cong H$. $A = H \Rightarrow A^2 \cong D$
5. We use a slightly different definition of OP^2 (which connot be raively defined as a quotient of $O^3 \setminus O$ due to the observe of associativity D) Define $T = \{ (x,y,z) \in O^3 : \ x\ ^2 + \ y\ ^2 + \ z\ ^2 = 1 \text{ and the algebra generated by } x,y,z \text{ is associative } Y.$ Define an equivalence relation $(a,b,c) \sim (x,y,z) \iff all of the following equations hold: aa^* = xx^*, bb^* = yy^*, cc^* = zz^*ab^* = xy^*, ac^* = xz^*, bc^* = yz^*$
Then $OP^{a} = T/N$
c. OP^2 is a 16-dimb manifold. We define charts as follows. Pick a triple $a,b,c\in \mathbb{R}$ and define $f_{a,b,c}: O^3 \rightarrow O$. Then it's easily dicked that if $(x,y,z) \sim (x',y',z')$, we have $f_{a,b,d}(x,y,z) = 0 \Leftrightarrow f_{a,b,c}(x',y',z')$. H follows that we may define an open xt $U_{(a,b,c)} = \frac{1}{2} \mathbb{E}[(x,y,z)] \in OP^2$: $f_{(a,b,c)}(x,y,z) \neq 0$?
Now the chart is $\Psi_{(a,b,c)}: U_{(a,b,c)} \longrightarrow O^2$ $E_{x_1,y_1,y_2} \longrightarrow \left(\frac{x l^*}{ l \ell ^2}, \frac{y l^*}{ l \ell ^2}\right)$, where $l = l(a,b,c)(x_1y_1,y_2)$
We curit the expression for the inverse map $\Psi_{(a,boc)}: \mathbb{O}^{2} \rightarrow \Psi_{(a,boc)}$. The fact that $\Psi_{(a,boc)}$ is well defined relies on the fact that in O, any subalgebra generated by two elements is associative (this is added alternativity). This is not true for 3 or more elements, so an analogous map $\mathbb{O}^{2} \rightarrow \Psi_{(a,boc)}$ would not be well defined for $n \ge 3$. It is easy to see that \mathbb{OP}^{2} is Hausdorff. Since T is compact, we conclude that \mathbb{OP}^{2} is a closed 16-dial anomald.
d (W structure. Entriely analogously to the real, complex and guaternionic cases, we have an embeddy $OP' \hookrightarrow OP^e$ and $OP' \cong S^8$. Now we have a normed space isomorphism $D \cong \mathbb{R}^6$, so we can canader $g: \mathbb{R}^8 \times \mathbb{R}^8 \cong \mathbb{O}^8 \times \mathbb{O}^8 \longrightarrow \mathbb{OP}' \cong S^8$ $(x,y) \longmapsto [x,y]$
Define $f = g _{S^{13}}$. We may extend f to $\tilde{f}: D^{16} \to \mathbb{CP}^2$ and one checks that this induces $\mathbb{CP}^1 U_g D^{16} \cong \mathbb{OP}^2$ (xy) $\mapsto [x_1y, \sqrt{1- x_1 ^2- 1y ^4}]$ In particular, $H^*(\mathbb{OP}^2, A) = \begin{cases} A & *=0, 8, 10 \\ 0 & 0/m \end{cases}$
e Hopp Invariant. Let T generate $H^{s}(\mathbb{OP}^{2})$ and σ generate $H^{lb}(\mathbb{OP}^{2})$. We show that $T^{2} = \sigma$ up to sign. H is clear that \mathbb{OP}^{2} is simply-connected so in porticular it is oriented. Now $H^{s}(\mathbb{OP}^{e}) \cong Hom(H_{g}(\mathbb{OP}^{e}), \mathbb{Z}) \cong Hom(H^{s}(\mathbb{OP}^{e}), \mathbb{Z})$ UCT PD
$\alpha \mapsto (\sigma \mapsto \alpha(\sigma)) \mapsto (\beta \mapsto \langle \alpha, [OP^{2}] \cap \beta \rangle = \langle \alpha \cup \beta, [OP^{2}] \rangle $ In particles I gets not to a generator of Hom (H ⁸ (OP ²), 2) = Z, so $\langle T \cup T, [OP^{2}] \rangle = \pm 1$ Therefore since $T^{2} = h(f)\sigma$, $\pm 1 = \langle T^{2}, [OP^{2}] \rangle = h(f) \langle \sigma, [OP^{2}] \rangle$, so $h(f) = \pm 1$, as desired. (Adjustry orientations, $\overline{\epsilon 2}$ we get the sign).