The octoninic projective plane $O P^{3}$ and map $S^{13} \rightarrow S^{8}$ with Hopl maniant 1 .
Fomenko-Fuchs isn't too detailed so I'll be follawin naddition a note on this abbjact by Malte Lackmann.
 a conjuggtion, then. \mathbb{A}^{2} cank mate into a normed \mathbb{R}-abyblire with a conjuytion by setting

$$
\begin{aligned}
& \text { - }(a, b) \cdot(c, d)=\left(a c-d^{*} b, d a+b c^{*}\right) \\
& \text { - }\|(a, b)\|=\sqrt{\|a\|^{2}+\|b\|^{2}} \\
& \text { - }(a, b)^{*}=\left(a^{*},-b\right)
\end{aligned}
$$

Example: $\mathbb{A}=\mathbb{R} \rightarrow \mathbb{A}^{2} \cong \mathbb{C} . \quad \mathbb{A}=\mathbb{C} \Rightarrow \mathbb{A}^{2} \cong H . \quad A=H \rightarrow \mathbb{A}^{2} \cong \mathbb{O}$
 Define $T=\left\{(x, y, z) \in \mathbb{O}^{3}:\|x\|^{2}+\|y\|^{2}+\|z\|^{2}=1\right.$ ad the afybra geneated by x, y, z is asociakie $\}$.
Defee an equivalace relation $(a, b, c) \sim(x, y, z) \Leftrightarrow$ all of the follawing quations hold:

$$
\begin{aligned}
& a a^{*}=x x^{*}, \quad b b^{*}=y y^{*}, \quad c c^{*}=7 z^{*} \\
& a b^{*}=x y^{*}, \quad a c^{*}=x z^{z^{*}}, \quad b c^{*}=y z^{*}
\end{aligned}
$$

Then $\mathcal{O P}^{2}:=T / \sim$

 H. pollous that we may defie anqper $x+U_{(a, b, c)}=\left\{[(x, y, q)] \in \mathbb{D}^{2}: l_{(a, b, c)}(x, y, z) \neq 0\right\}$

Now the chat is $\varphi_{(m, b, c)}: U_{(6, b, c)} \rightarrow \sigma^{2}$

$$
[x, y, 2] \mapsto\left(\frac{x l^{*}}{\|\ell\|^{2}}, \frac{y l^{*}}{\| \|^{2}}\right) \text {, where } l=l_{(a, b, c)}(x, y, z)
$$

 sbalforara guncated by two devents is associative (this is aled alternatinty). This is ot tive for 3 or moe efemats, so an andegus map $V^{n} \rightarrow U_{\text {(a,ani) }}$ wadd n it be well dephed for $n \geqslant 3$.
It is eay to see that $\mathbb{O} P^{2}$ is Hausdorld. Since T is campect, we conclude that $\mathbb{O P}$ is a choed 16 -dial manflad.
d. $C W$ struture. Entiely analgoosly to the rel, combex and quatervionic caes, we have an cmbeddy $O P^{\prime} \hookrightarrow \subseteq P^{2}$ and $O P^{\prime} \cong S^{8}$. Now we have a named space isemachism $\subseteq \subseteq \mathbb{R}^{\mathbf{R}}$, so we an carver.

$$
[x, y] \mapsto[x, y, 0]
$$

$$
\text { g: } \mathbb{R}^{8} \times \mathbb{R}^{8} \cong \mathbb{O}^{8} \times \mathbb{O}^{8} \rightarrow \mathbb{P}^{\prime} \equiv S^{8}
$$

$$
(x, y) \longmapsto[x, y]
$$

In particuler, $H^{*}\left(D P^{2}, A\right)=\left\{\begin{array}{cc}A & *=0,8,16 \\ 0 & 0 / m\end{array}\right.$
e. Hopp muariant. Let τ ganacke $H^{8}\left(D^{2}\right)$ and σ gerenate $H^{16}\left(O P^{2}\right)$. We shaw that $\tau^{2}=\sigma$ up to sisn. It is clear that $\mathbb{S P}^{2}$ is simply-comected so in partecular it is ariated. Now.

In particher τ gets rat to a genereator of $\operatorname{Htam}\left(H^{8}\left(\mathbb{O}^{p}\right), \Psi\right) \cong \mathbb{Z}, \infty \quad\left\langle\tau \cup \tau,\left[\mathbb{D}^{2}\right]\right\rangle= \pm 1$
Therfore since $\tau^{2}=h(f) \sigma, \pm 1=\left\langle\tau^{2},\left[\operatorname{DP}^{2}\right]\right\rangle=h(f)\left\langle\frac{\left.\sigma_{1}\left[\operatorname{P}^{2}\right]\right\rangle, ~ o r}{\epsilon Z} \quad h(f)= \pm 1\right.$, as desined. (Adjusting oriatations, we get the sisn).

$$
\begin{aligned}
& H^{8}\left(O P^{2}\right) \cong H_{o m}\left(H_{8}\left(\Phi P^{2}\right), \mathbb{Z}\right) \cong H_{o m}\left(H^{8}\left(O P^{2}\right), \mathbb{Z}\right) \\
& \alpha \stackrel{K_{T}}{\mapsto}(\sigma \mapsto \alpha(\sigma)) \mapsto \quad\left(\beta \mapsto\left\langle\alpha,\left[Q^{2}\right] \cap \beta\right\rangle=\left\langle\alpha \cup \beta,\left[\Phi^{2}\right]\right\rangle\right)
\end{aligned}
$$

