Introduction to Heck algebras and Afire Hecke afeboras

1. Motivation (Heck alybbas in nature).

- Effintion
A. Coxeter system (W, S) is a group and a finite at. $S \subset W$ such, that $W=\langle S \mid R\rangle$, where the ret of relations is:
- $s^{2}=1$
- $\underbrace{\text { str } \cdots}_{m_{0}}=\underbrace{\text { stat. }}_{m_{8 c}}$
$V_{s} \in S$ quadratic:

Example: $W=$ Weyl group, $S=$ simple reflections
The Heck afebora associated to (W, S) is the unital associative algebra. $H=H(W)$ over $\mathbb{Z}\left[v, v^{-1}\right]$ generated by the symbol $\left\{\delta_{s}: s \in S\right\}$ such that

- $\delta_{s}^{2}=\left(v^{-1}-v\right) \delta_{s}+1 \quad$ "quadratic" $\leftarrow\left(\delta_{s}-v^{-1}\right) \cdot\left(\delta_{s}+v\right)=0$
- $\underbrace{\delta_{s} \delta_{t} \cdots}_{\text {mot }}=\underbrace{\delta_{t} \delta_{s} \cdots}_{m_{s t}} \quad$ "braid"

Note that peccicizing to $v=1$. one gets. the $\delta^{n a p}$ algebra. $\mathbb{C}[W]$
But why?

- Braid groups

The Braid group is the group generated by $\left\{T_{s}: s \in S 4\right.$ subject only to the braid relations.
Typ A:

Representations of the braid group that factor through W have $\varphi\left(T_{s}\right)^{2}=1$:
Covider representations that satisfy the deformed $\varphi\left(T_{s}\right)^{2}+p \varphi\left(T_{s}\right)+r$ nus $_{\text {scale }} \varphi\left(T_{s}\right)^{2}=\left(q^{-1}-q\right) \varphi\left(T_{s}\right)+1$ (many doices for a peratation, all som.)

- Number theory
$(G, K) \quad \Rightarrow H(G / / K)=(K \times K)$-invariant continuous functions $G \rightarrow \mathbb{C}$ of comport support. mimadtr, lady loud dap compact top gop

Algebra structure: convolution $\left.\quad(u, v) \mapsto \int_{G} u(f) v g^{-1} x\right) d g$
Example: $G=G L_{2}(Q), K=G L_{2}(Z)$ wo $H(G / / K)=$ ring of Heckle operators on modeler forms
(here "Hecke", athloyh it was .wahori who introduce them)

- Finite groups

Consider a finite group $G \geqslant B$, and an irrep ψ of H.

Clearly: $\{$ ireps in $\ln f \psi\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ ines of " $\left.H(G, B, \psi)^{\circ}\right\}$. More precisely:

Setting $\psi=1,\left.\quad \operatorname{lnc}\right|_{0} ^{\sigma} 1={ }_{G / 3} B g \leftrightarrow(B \times 1)$-invariant functions $G \rightarrow \mathbb{C}$

$$
\text { End }_{\mathbb{O}}\left(\ln _{\mathbb{B}}^{G} 1\right) \mapsto(B \times B) \text {-invariant functions } G \rightarrow \mathbb{C}
$$

Note that the algebra structure is again give by convolution: $(u * v)(x)=\frac{1}{|B|} \sum_{g \in G} u(g) v\left(g^{-1} x\right)$
Groups of Lie type: G (es. $G \ln _{n}\left(\mathbb{F}_{p_{k}}\right)$), B Board wo $H(G, B, 1)=H_{s}(w) /\left(q=p^{k}\right)$
Another heuristic for why $H\left(G L_{n}\left(\mathbb{F}_{q}\right), B, 1\right)$ deforms S_{n} \#/lays in $\mathbb{F}_{f}^{n}=$ Bordered basis in $\mathbb{F}_{q}^{n}=q^{(2)} \cdot \frac{q^{n}-1}{q^{n-1}} \cdot \frac{q^{n-1}-1}{q^{-1}} \cdots \frac{q-1}{q-1}=q^{\left(q_{2}\right)}\left(q^{n-1}+\ldots+1\right)\left(q^{n-2}+\ldots+1\right) \cdots(1)$

- Quantum grans
 (actions remplative cache otter)
Quantum Schor-Wepl duality: $U_{f}\left(g g_{n}\right) C V_{\xi}^{\theta r} \zeta H\left(S_{n}\right)$ wo idem. (q-deformed actions)
- Kazhdan-Lusztry theory

Two $\mathbb{Z}\left[v, v^{-}\right]$-bases:

- Standard: $\left\{\delta_{x}: x \in W\right\}$ (Here we tale a reduced expression $\underline{x}=s_{1} \ldots s_{n}$ and defier $\delta_{x}=\delta_{s_{1}}: \ldots \delta_{s_{n}}$)
- Kazhdan-Lustig: $\left\{b_{x}: x \in W\right\}$ charactenzed by: $\quad \bar{b}_{x}=b_{x} \quad\left(k L\right.$ nuofotion $\quad \begin{array}{l}\bar{\delta}_{s}:=\delta_{s}^{-1}=\delta_{s}+\left(v-v^{-1}\right) \\ \bar{v}:=v^{-1}\end{array}$ extended meltipliactively $b_{x}=\delta_{x}+\sum_{y<x} h_{y x} \delta_{y}$.for some $h_{y x} \in v z[v]$."degree bouncy"

Let λ be dominant, $M(\lambda):=U(n) \otimes_{\text {(My) }} \mathbb{C}_{\lambda}, L(\lambda):=$ simple module of haw. λ. The $K L$ conjecture says:

$$
[M(y \cdot 0): L(x \cdot 0)]=\left.h_{y x}\right|_{v=1}
$$

- Link invariants

Traces on H no Alexander, Jones polys

- Categorical actions: Heck category CO.
- Modular rep theory: $\left.H\right|_{q=\sqrt{1}}$ Hyp A) decomposition matrices corclif decoup matrices of S_{n} in dear p.

2. Representation theory of H. for W Pinite.

What dos H-mod look like? Spoiler: just like W-mod. However, me can specialize q to any element of \mathbb{C}^{*}, and the representation categories will be diffract.
Let $z \in \mathbb{C}^{x}$. We will denote. $H_{z}:=\mathbb{Z}\left[\xi^{*}\right] /\left(q_{-}\right) \in 2\left[\xi^{+ \pm}\right]$
First question: for what values of z is $H_{z} s s$?
Def(Trace form): If A is a f.dinel K-algebra, denote $L_{x}: A \rightarrow A$. Then the trace form is $\left.C_{1}\right): A \times A \rightarrow K, \quad(x, y)=\operatorname{Tr}\left(L_{x} C_{y}\right)$.
$a \mapsto x a$
Rink: The trace can be defied for Heck agebons even if, they are not f. dines.

Prop: A is is \leftrightarrow (1) is nondegenate
Pol
\Rightarrow) Nondegenereary can be checked by passing to \bar{K}. Now $A \underset{K}{\Phi} \bar{K}$ is a prodet of matrix afebias over \bar{K}. These ore simple ad hence contain no dable-sided ideals, in partialer the radical of the form restricted to each is 0 ,
\Leftrightarrow Peach A Attivian $\Rightarrow J(A)=$ largest nipptat right ideal.

Let $R=K\left[q^{ \pm}\right]$. Assume A is an R-algebra, finite as an R-mode. For $f \in K^{X}$, date $A_{f}=A \otimes R /(q-f)$
Prop: If A_{f} is ss, then A is ss.
Proof. The discriminant of the trace form on A is $D(q)$, so if $\left.D(q)\right|_{q=\delta} \neq 0, D(q) \neq 0$.
Cor: The generic Heck afybra is semisimple.
Prof: The specialization to $\mathfrak{q}=1$ is $\mathbb{C}[\omega]$, which is semisimple.
Moreover, we have the polkaing ringer rent:
Theorem (Tits' Deformation the): if H_{z}, H_{z} are xmissmple, then $H_{z} \cong H_{3}$ abstractly.
 dimensions n_{1}, \ldots, n_{e}, "the numerical invariant". It affices to show the memorial invariants for H_{2} are the same: n_{1}, \ldots, n_{k}.

Adjoin formed variables x_{w} for $w \in W$ and consider $H_{\overline{C(s)}} \otimes \overline{C_{(S)}}\left(x_{w} \times \pm \in W\right)$, in order to write a "generic elway" $a=\sum_{w} x_{w} \delta_{w}$. let $P(t)$ b_{2} it char poly, say. $P(t)=\Pi P_{i}(t)$ ii in $\overline{\mathbb{C}(G)}[t, x: w \in w]$ is the decamp into in eds.

So write $a=\sum_{i j l} y_{i j}^{l} E_{1 j}^{l}$ for $y_{i j}^{\prime} \in \overline{\mathbb{C}\left(k_{q}\right)}\left(x_{w}: w \in w\right)$. The dance of basis matrix has entries in $\overline{\mathbb{C}\left(C_{q}\right)}$ so $\overline{\mathbb{C}\left(\epsilon_{9}\right)}\left(x_{0} \cdot w \in w\right)=\overline{\mathbb{C}\left(q_{q}\right)}\left(y_{i j}^{l}\right)$. In this basis,

$$
P(t)=\prod_{l} \operatorname{det}\left(t_{i d}-y_{i j}^{l}\right)^{n_{l}}
$$

Now specialize $y_{i j}^{\ell}$ so that the $\operatorname{det}\left(t_{1} d-y_{i j}^{\ell}\right)$ are irred and distinct. Then $P_{l}(t)=\operatorname{det}\left(t \cdot i d-y_{i j}^{l}\right)$ and $e \rho=n e=\operatorname{deg} P_{l}(t)$;

Now consider the generic dement $a=\sum x_{w} \delta \in \in H_{\geq} \otimes \mathbb{C}\left(x_{w}: w \in W\right)$. By the same argunat, since H_{z} is $s s$, its char $p o l y$, $\left.P_{l}(t)\right|_{q=t}$, has its ireducible factors appearing with multiplicity $=$ degree. Since $n_{l}=\left.\operatorname{deg} P_{l}(t)\right|_{q=7}$, the $\left.P_{l}(t)\right|_{g=z}$ must b e irred and diritint. Hence the ne are the numerical invariants for H_{z} too. I

Conclusion: H_{z} for generic z is isomorphic to $\mathbb{C}[w]$.
When exactly? Whenever $z \notin\{D(q)=0\}$. This aments to: H_{z} is ss ill $z^{2 \cdot(1(10)} \sum_{m \in \mathbb{W}} z^{z^{\ell}(m)} \neq 0$. For type A, this amounts to: H_{z} is ss. ill $\operatorname{order}(z)>n$ or if $n \geqslant 3, z=0$ all conchs.
3. Aline Hecke algebras and the ir representations Reference. for aud half:. MIT-Northeartern 2017. DAHAEHA seminar notes.
Definition: not quite $H(W, S)$ for W allie, but close.
Motivation:

- Reductive p-adic groups

- K-theory
G complex ss simply connected $L_{\text {ic }}$ goop, $N=$ nilptat core, $\bar{N} \rightarrow N$ Springer resolution, $Z=\bar{N} \times \underset{N}{N}$ "Steinberg variety". Then $K^{G}(Z)=\mathbb{Z}\left[W_{a f}\right]$ and $K^{G \times C^{x}}(Z)=H_{a l}$
- First step to understand Cherednik algebras

Immediate problem: Tits' deformation any ument fails. Rep theory of seccializations becomes much more involved. (For the ret I use a singe reference: MacDonald, AHA and orthogonal polynomials)

Affine stull
Fix a /pinite irreducible reduced system $R \subset V$. Here V has an inner product (1). Embed $V \subset \vee \oplus \mathbb{C} \delta$, with $\delta \perp V$. Then the associated affine root sytien is $R^{a}:=\{\alpha+n d: n \in \Psi\} \subset F$ Writing $\alpha^{\alpha}=\frac{2 \alpha}{(\alpha, \alpha)}$, we have $Q:=\sum_{\alpha \in R} Z_{\alpha}$ root lattice $Q^{v}:=\sum_{\alpha^{2} \in \mathcal{L}^{\alpha}}$. corot Entice.

R

R^{a}

Then $W=\left\langle s_{\alpha}: \alpha \in R\right\rangle, W^{a}=\left\langle S_{a}: a \in R^{a}\right\rangle$
For $v \in V$, denote $t(v): v \rightarrow V$. Then $t(v)(\alpha)=\alpha-(v, \alpha) d$.
Then $t\left(Q^{*}\right) s W^{*}$ and $W^{a}=W \times t\left(Q^{\circ}\right)$ "allie. Wept group"

Zero focus of R :

Zero boas of R°

 Thee are the simple after roots. Note $\alpha_{i}=a_{i}$. Face: $y, \theta \in R^{+}$, the higher not, $a==\theta \cdot \delta$

Notice that $W^{0 c}:=W \propto t\left(P^{v}\right)$ combat oneghts $)$ ado ats on $R^{a} \cdot t(\lambda)(a)=a-\underbrace{(\lambda, a) \delta}_{\in \mathcal{I}}$
This admits a length function extadng that of W^{a} and W. Note that $\Omega:=\left\{\omega \in W^{\text {ac }}: \rho(\omega)=0\right\}=\left\{\omega \in W^{\text {ace }}: \omega A=A\right\}$ is a finite gray.

We have $\Omega=P^{\prime} / Q^{0}$ (apure dagan abmorphimss) and $W^{\text {ae e }}=\Omega \propto W^{-}$Note that $\Omega \subset A \sim \Omega C$ cadre simple rots, os if $\pi_{c}\left(a_{i}\right)=q_{j}, \pi_{r} s_{i} \pi_{l}^{-1}=s_{j}$, hence the x misdirect product.

Braid grape

The braid nation is equirinent $t_{0}: T_{m} T_{\omega}: T_{\text {wow }}$. whenever $\ell(m \omega)=\ell(\omega)+\ell(\omega)$.
Define the aline braid group. B^{a} as that of $\left(W^{6}, I\right)$, and the extated affine braid gap $B^{\text {ae }}$ as then of ($\left.W^{c e}, I\right)$ $B^{\text {ae }}$ has two important abgrups.

- For $\lambda \in P_{+}^{v}$, define $y^{\lambda}=T_{t(x)}$, for $\mu-v \in P^{v}$, dine $y^{\mu-r}=y^{\mu}\left(y^{v}\right)^{-1}$. These generate a copy of P^{v}.

Proposition: $T_{1}, \ldots, T_{n}, Y^{\lambda}: \lambda \in P^{v}$ generate $B^{\text {ae }}$ as a group
If $\left(\lambda, \alpha_{i}\right)=0$ then $T_{i} y^{\lambda}=y^{\lambda} T_{i}$
$\left(\lambda, \alpha_{i}\right)=1$ then $T_{i} Y^{\lambda}=y^{\lambda} T_{i}^{-s_{i} \lambda}$
(idea: reduce to $\lambda \in D_{+}^{v}$ and use properties. of the length function)
The previous proposition leads to a presentation of $B^{a e}$ reminisces of $W^{a e}=W \times t\left(P^{v}\right)$:

$$
B^{a e}=\left\langle T_{1}, \ldots, T_{n}, y^{p^{p}} \left\lvert\, \begin{array}{l}
T_{i} y^{d}=y^{2} T_{i} \quad\left(\alpha_{i}, \lambda\right)=0 \\
\left.T_{i} y^{2}=y^{4} T_{i}^{s i d \lambda}\right) \\
\left(\alpha_{i}, \lambda\right)=1
\end{array}\right.\right\rangle
$$

We can finally state:
Definition ($A H A)$: The affine Heck algebra. $H\left(W^{a e}\right)$ is the quotiat of the group algebra of $B^{c e}$ by the Heck relations: $\left(T_{i}-q\right)\left(T_{i}+q^{-1}\right)=0$ How do the T_{i} and y^{λ} interact in $H\left(w^{\text {ae }}\right)$?

Lemma: $T_{i} Y^{\lambda}-Y^{\text {sid }} T_{i}=\left(q-q^{-1}\right) \frac{y^{\text {sid }}-y^{\lambda}}{y^{-\alpha_{i}^{*}}-1}$
Proof: A calculation shows that if this holds for y^{λ} and y^{μ}, then it hods for $y^{-\lambda}$ and $y^{\lambda+\mu}$. So two cares to check:

- $(\lambda, \alpha)=0 \Rightarrow$ this says $T_{i} y^{\lambda}=y^{\lambda} T_{i}$.
- $\left(\lambda, \alpha_{i}\right)=1 \Rightarrow$ this says $T_{i} Y^{\lambda}-Y^{\delta_{i}^{(\lambda)}} T_{i}=\left(q-q^{-1}\right) Y^{\lambda}$
" (Pap)

$$
T_{i} y^{\lambda}-T_{i}^{-1} y^{\lambda}=T_{i} y^{\lambda}-\left(T_{i}^{-1}+q-q^{-1}\right) y^{\lambda} \text { as desired } D
$$

We have given two presentations of $B^{\text {ae }}$: Coxeter $\left(B^{a e}=\Omega \times B^{a}\right)$ ad. Bernstein $\left(B^{a c}=\left\langle T_{i}, y^{\wedge} \mid \ldots\right\rangle\right)$. This supplies the following.
Prop: - $H\left(W^{c e}\right) \cong \Omega \times H\left(W^{a}\right)$, therefore $\left\{T_{\omega}: w \in W^{a c}\right\}$ is a \mathbb{C}-basis for $H\left(W^{a c}\right)$.

- The subaljebra generated by T_{i} (indudig 0) is ism to. $H\left(W^{a}, S\right)$.
T_{i} (not indeldyal " $H(W, S)$
Q: Basis for the second presentation?
Fact: as \mathbb{C}-v.s., $H(W, S) \oplus \mathbb{C} Y^{p^{v}} \sim H\left(W^{a c}\right)$, so $\left\{T_{w} Y^{\lambda}: w \in W, \lambda \in P^{\prime}\right\}$ is another basis.

$$
x \bullet y \longmapsto x y
$$

This map allows us to construct many represatations of $H\left(W^{a c}\right)$: for E a rep of $H(W, S)$, $\operatorname{lnd} E:=H\left(W^{\text {ae }}\right){ }_{H(W)}^{\infty} E$ As a $\mathbb{C} Y^{p p^{p}}$-module, $\operatorname{lnd} E=\mathbb{C} y^{p^{\circ}} \otimes E$.
In particaler, of $E=\mathbb{C}$ by specializing $q=\tau$, we get $\mathbb{C} y p$ " "Polynomial represatation"
Now the last lemma implies that T_{i} acts by $\tau s_{i}+\left(\tau-\tau^{-1}\right) \frac{s_{i}-1}{y^{-a i}-1}$ in $\mathbb{C} y^{p^{*}}$
Remark: - One can modify this action to $\beta: T_{i} \mapsto \tau s_{i}+\left(\tau-\tau^{-1}\right) \frac{s_{i}-1}{y^{a_{i}}-1}$ nav acting on. $\mathbb{C}[x]$ (group algebra of the weight (lAttice)
This is called Cherednik's basic represalation.

- Both of these represatations are faithful.
- In fact DAHAs can be defined as the 2 -parameters (q, τ) subadjebra of $E_{\text {ad }}(\mathbb{C} \mid X X)$ gen by $\left.X\right\rangle \beta\left(T_{\omega}\right)\left(\lambda \in P, w \in W^{\text {aec }}\right)$.

We finsh by compoting the center of the AHA
Thearem: $z\left(H\left(W^{\text {ce }}\right)\right)=\left(\mathbb{C} y^{p^{v}}\right)^{w}$.
Prool

c) B_{y} the kemana, $f f \in C Y^{p^{v}}, T_{i} f$ - sif $T_{i}=g(y) \in \mathbb{C} y^{p^{p}}$ If f is central, $\left(f-\right.$ sif) $T_{i}=g(y) \underset{\text { basis }}{\Rightarrow} f=$ sif.
So A oflies to ree that $f \in \mathbb{C} y^{p^{v}}$. Now under the plynomial represeataion $\mathbb{C} y^{P^{v}}, f$ coumuctes wth all laneat polynomicals, herce its image is a Lavrat papomial But the polynomial represatation is faithpll so $f \in \mathbb{C} Y^{p \times}$. D

