Introduction to Hecke algebras and Alline Hecke algebras				· ·	•
N. Notivation (Heake algebras in nature)					•
 Definition A Coxeter system (W,S) is a group and a finite set S C W such that W = s² = 1 V₃ES "guadratic" sts = tst.t V₃tES "braid" 	(S R)		 	slations is	•
Example: $W = Weyl group$, $S = simple reflections$ The Hecke algebra associated to (W_1S) is the unital associative algebra. $H = H(W)$ by the symbols $f S_s : s \in S \{$ such that	0164 0	₩{v, v-] zenerates	 _ ا	•
• $\delta_{s}^{2} = (v^{-}-v)S_{5} + 1$ "quadratic" $\leftrightarrow (\delta_{s}-v^{-})(\delta_{s} + v) = 0$ • $\underbrace{\delta_{s}\delta_{t}}_{max} = \underbrace{\delta_{t}S_{s}}_{mbx}$ "braid"	· · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•
Note that specializing to v=1 one sets. The snap algebra CLWI	· · ·	· · · ·	· · ·	· · ·	•
• Braid groups The Braid group is the group generated by $[T_s: s \in S : s \ s \ bject$ only to the braid relations. Type A:	8. ↓ H	· · · ·	· · ·	· · ·	•
The first of the braid group that factor through W base $P(T_5)^2 = 1$. Consider representations that satisfy the deformed $P(T_5)^2 + pP(T_5) + r$ and $P(T_5)^2 = (q^{-1} - q) Y$. Scale		· · · ·	· · ·	· · ·	•
(many droices for a peratation, all isom.)	(Ts) + 1	· · · ·	· · ·	· ·	•
• Number theory $(G, K) \rightarrow H(G//K) = (K \times K) - invariant continuous functions G \rightarrow C of compart unimoder, loady chird ships compart top you? Algebra structure: convolution (u, v) \mapsto (u(s) v(s' \times) dg$	support.	· · ·	· · ·	· ·	•
G $E \times augle: G = GL_2(Q), K = GL_2(Z) \longrightarrow H(G//K) = ring of Hecke operators on module$			· ·	· ·	•
(horce "Hecke", although it was lunchori u	₩ ₩ (117 10,440,6 5	(nenn)	· ·	· ·	•

		• • • •	* * *	• •	• •	• •	• •
• Finile groups							• •
(onsider a finite group G≥B, and an irrep 4	· · · · · · · · · · · · · · · · · · ·						
(onsider a finite group . $G \gtrsim B$, and an irrep \mathcal{V} . Now how does $\operatorname{Ind}^{G}_{\mathfrak{s}}(\mathcal{V})$ decompose? "Unipdate principal or	the	rtain information (ry. irep to g	(m=1).			
(learly: 2 irreps in Indiat & Comparent of irreps of					• •		• •
$End_{cc}(hd_{s}^{e}\psi) = Hom_{cc}(hd_{s}^{e}\psi, hd_{s}^{e}\psi) = Hom_{cb}$	$(\operatorname{Res}_{s}^{c} \operatorname{Ind}_{s}^{c} \Psi, \Psi) = \bigoplus_{a \geq c/B}$	Hom _{CB} (Ind ^B R	BABS 43,	¥)	• •	• •	• •
Setting $4 = 1$, $\ln c_b^{-1} = \bigoplus_{G \in S}^{B} g \iff (B \times 1) - in$ $End_{GC} (\ln d_b^{-1}) \iff (B \times B) - in$ Note that the abgebra structure is again given by	variant functions $G \rightarrow C$	• • • • •			• •		• •
Ender (Inder 1) → (B×B) - in	variant functions G -> C						
Groups of Lie type: G (e.g. $GL_m(F_{px})$), B	Back we $H(G,3,1) = H_{s}(W)/(g$, ,= Ϸ ^κ) · · · ·		• •			
Another Incuristic for why H(GLn(IFq), B, 1) defor	uns Sn :						
# (lays in $\overline{R_3}^{n}$ = Hordered basis in $\overline{R_3}^{n} = q^{\binom{n}{2}} \cdot \frac{3^{n-1}}{3^{n-1}} \cdot \frac{3^{n-1}}{3^{n-1}}$ If $g = 1$, this is $n!$, and since $GL_n(\overline{R_3})CG_n$ freely +		A) :					
If g=1, this is n!, and since GLa (Fg)C& freely +	there were $GL_{\mathfrak{g}}(\mathfrak{f}_n) = Sn^*$	"B = 1", "H	(Gyn (Fr.), 1, 1)	= \$~			
• Quantum groups						• •	• •
Classical Schur-Weyl duality. gl. C Vor (artists certaine	3 Sr Mp {gh-irreps in	V " {	-imeps in V		partitions of	· · ·	• •
lactions centralize	(c.d. other)						
Quantum Schur - Wey I duality: (15(gln) C Vg	5 H (S.) we iden					• •	
Quantum Schur-Weylduality: Ug(gln)C V5" (g-sylormed	5 H (S.) we iden			· · ·	· · ·	· ·	· ·
Quantum Schur-Weylduality: Ug(gln)C Vg (g-sylormed Kazhdan-Lusztiz theory Two Z/[v,v]-bases:	5 H (Sn) we ideun	· · · · ·	· · · ·	· · ·		· · ·	· · ·
Quantum Schur-Weylduality: Ug(gln)CVg (g-sylormed • Kazhdan-Lusztiz theory Two Z/[v,v]-bases: • Standard: {Sx:xEW} (Here we take	$5 H(S_n)$ we then address) a reduced expression $\underline{x} = s_1 \dots s_n$	and defire . S _x :	- δ _s , δ _{šn}	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·
Quantum Schur-Weylduality: Ug(gln)CVg (g-sylormed • Kazhdan-Lusztiz theory Two Z/[v,v]-bases: • Standard: {Sx:xEW} (Here we take	$5 H(S_n)$ we then address) a reduced expression $\underline{x} = s_1 \dots s_n$	and defire . S _x :	- δ _s , δ _{šn}	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur-Weylduality: Ug(gln)CVg (g-sylormed • Kazhdan-Lusztiz theory Two Z/[v,v]-bases: • Standard: {Sx:xEW} (Here we take	$5 H(S_n)$ we then address) a reduced expression $\underline{x} = s_1 \dots s_n$	and defire . S _x :	- δ _s , δ _{šn}	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur-Weylduality: Ug(gln) C Vg (g-dformed Kazhdan-Lusztiz theory Two Z([u,v]-bases: Standard: { Sx: xEW} (Here we take Kazhdan-Lusztiz: 1 bx: xEW} charoclerized	5 H (S _n) we return actions) a reduced expression $\underline{x} = s_1 \dots s_n$ by: $\overline{b_x} = b_x$ (H $b_x = S_x + \underline{\xi} = h_y$	and define $S_x = \overline{S}_x$ (1. involution $\overline{S}_x = \overline{S}_x$ (1. \overline{S}_y for some	$= S_{s}^{-1} = S_{s}^{-1}$ $= v^{-1}$ $= h_{y\times} \in v^{-1}$	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur-Weylduality: Ug(gln)CVg (g-sylormed • Kazhdan-Lusztiz theory Two Z/[v,v]-bases: • Standard: {Sx:xEW} (Here we take	5 H (S _n) we return actions) a reduced expression $\underline{x} = s_1 \dots s_n$ by: $\overline{b_x} = b_x$ (H $b_x = S_x + \underline{\xi} = h_y$	and define $S_x = \overline{S}_x$ (1. involution $\overline{S}_x = \overline{S}_x$ (1. \overline{S}_y for some	$= S_{s}^{-1} = S_{s}^{-1}$ $= v^{-1}$ $= h_{y\times} \in v^{-1}$	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur-Weylduality: Ug(gln)CVg (g-dformed Kazhdan-Lusztiz theory Two Z(U,v]-bases: Standard: {Sx:xEW} (Here we take Kazhdan-Lusztiz: 1bx:xEW} characterized	5 H (S _n) we return actions) a reduced expression $\underline{x} = s_1 \dots s_n$ by: $\overline{b_x} = b_x$ (H $b_x = S_x + \underline{\xi} = h_y$	and define $S_x = \overline{S}_x$ c. involution \overline{S}_x ix S_y for some KL conjecture say	$= \delta_{s}^{-1} = \delta_{s}^{-1}$ $= v^{-1}$ $= v^{-1}$ s^{1}	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur-Weylduality: Ug(gln) C Vg (g-dormed Kazhdan-Lusztiz theory Two Z[[v,v]-bases: Standard: { Sx: xEW} (Hex me take Kazhdan-Lusztiz: 1bx: xEW} characterized Let X be dominant, H(X):= U(m) g CX, L(X	5 H (Sn) we return actions) a reduced expression $\underline{x} = s_1 \dots s_n$ by: $(b_x = b_x)$ (if $b_x = S_x + \sum_{y < x} h_y$):= simple module of h.w. λ . The	and define $S_x = \overline{S}_x$ c. involution \overline{S}_x ix S_y for some KL conjecture say	$= \delta_{s}^{-1} = \delta_{s}^{-1}$ $= v^{-1}$ $= v^{-1}$ s^{1}	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur - Wey I duality: $(I_q(g n) C V_q^{or})$ (q-informed • Kashdain - Lusztiz theory Two Z([v,v]-bases: • Standard: $\{S_x : x \in W\}$ (Here we take • Kashdan-Lusztiz: $\{b_x : x \in W\}$ (Here we take • Kashdan-Lusztiz: $\{b_x : x \in W\}$ (Here we take • $[A(y, 0) : L(x, 0)] = h_{yx} _{y=1}$	5 H (Sn) we return actions) a reduced expression $\underline{x} = s_1 \dots s_n$ by: $(b_x = b_x)$ (if $b_x = S_x + \sum_{y < x} h_y$):= simple module of h.w. λ . The	and define $S_x = \overline{S}_x$ c. involution \overline{S}_x ix S_y for some KL conjecture say	$= \delta_{s}^{-1} = \delta_{s}^{-1}$ $= v^{-1}$ $= v^{-1}$ s^{1}	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur - Wey I duality: $(I_q(g n) C V_q^{qr})$ (q-informed • Kashdain - Lusztiz theory Two Z(EV, V] - bases: • Standard: $\{S_x : x \in W\}$ (Here we take • Kashdan - Lusztig: $\{b_x : x \in W\}$ (Here we take • Kashdan - Lusztig: $\{b_x : x \in W\}$ (Here we take • Kashdan - Lusztig: $\{b_x : x \in W\}$ (Here a_x take • $[A(y \cdot 0) : L(x \cdot 0)] = h_{yx} _{y=1}$ • Link invariants Traces on H we Alexander, Jones polys	5 H (Sn) we return actions) a reduced expression $\underline{x} = s_1 \dots s_n$ by: $(b_x = b_x)$ (if $b_x = S_x + \sum_{y < x} h_y$):= simple module of h.w. λ . The	and define $S_x = \overline{S}_x$ c. involution \overline{S}_x ix S_y for some KL conjecture say	$= \delta_{s}^{-1} = \delta_{s}^{-1}$ $= v^{-1}$ $= v^{-1}$ s^{1}	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur - Weyl duality: Ug(gln) C Vg (g-sylamod Kashdan - Lusztiz theory Two Z(U.V.]-bases: Standard: I Sx: xEWS (Here we take Kashdan - Lusztig: Ibx: xEWS characterized Let λ be dominant, $H(\lambda) := U(wto G_{\lambda}, L(\lambda I))$ [$H(y.0): L(x.0)$] = $h_{yx} _{v=1}$ [$H(y.0): L(x.0)$] = $h_{yx} _{v=1}$ [$H(y.0): L(x.0)$] = $h_{yx} _{v=1}$ [$H(y.0): L(x.0)$] = $h_{yx} _{v=1}$	5 H (Sn) we return actions) a reduced expression $\underline{x} = s_1 \dots s_n$ by: $(b_x = b_x)$ (the $b_x = S_x + \sum_{y < x} h_y$):= simple module of h.w. λ . The	and define S_x : $x = S_y$ for some K = Conjecture Suy	$= \delta_{s}^{-1} = \delta_{s}^{-1}$ $= \sqrt{-1}$ $= \sqrt{-1}$ s^{-1} s^{-1}	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
Quantum Schur - Weyl duality: $(l_q(gln) C V_q^{qr})$ (q-informed Kashdain - Lusztiz theory Two Z(U,v]-bases: Standard: $\{S_x : x \in W\}$ (Here we take Kashdan - Lusztig: $\{b_x : x \in W\}$ characterized Let λ be dominant, $H(\lambda) := U(w) \otimes C_{\lambda}$, $L(\lambda)$ $[H(\gamma \cdot 0) : L(x \cdot 0)] = h_{\gamma \times} _{v=1}$ Link invariants Traces on H we Alexander, Jones polys	5 H (Sn) we return actions) a reduced expression $\underline{x} = s_1 \dots s_n$ by: $(b_x = b_x)$ (the $b_x = S_x + \sum_{y < x} h_y$):= simple module of h.w. λ . The	and define S_x : $x = S_y$ for some K = Conjecture Suy	$= \delta_{s}^{-1} = \delta_{s}^{-1}$ $= \sqrt{-1}$ $= \sqrt{-1}$ s^{-1} s^{-1}	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	

2. Representation theory of H for W finite.
What does H-mod look like? Spoiler: just like W-mod. However, we can specialize q to any element of C [*] , and the representation categories will be different. Let $z \in C^*$. We will densite $H_z := 2/Iq^2 I = 0$ H. $(q-z) = 2/Iq^2 I$
(g-z) 215"1 First question: for what values of z is Hs ss?
\mathbb{D} (Trace form): If A is a fidial. K -algebra, cloude $L_x: A \rightarrow A$. Then the trace form is $(,): A \times A \rightarrow K$, $(x,y) = Tr(L_x L_y)$.
a → xa Runk: The trace can be defined for Hecke algebras even if they are not fidiul.
Prop: A is so (,) is nondegenovale
: : : : : : : : : : : : : : : : : : :
⇒) Nondegeneracy can be checked by passing to R. Now A®R is a product of matrix algebras over R. These one simple and hence contain no dauble-sided ideals, in particular the radical of the form restricted to each is O.
←) Recell A Artinian => J(A) = largest nilpotent right ideal. Now if j ∈ J(A), ja is nilpotent for all a ∈ A. Pass to K, upper triangularise the action of ja no Tr(ja) = O Va => j ∈ rod((.,)).
Let $R = K [q^{\pm 1}]$. Assume A is an R-algebra, finite as an R-module. For $J \in K^{\times}$, double $Ag = A \otimes \frac{R}{R} (q-j)$.
Prop 1 1 Ag is ss, them A is ss.
Proof The discriminant of the trace form on A is $D(q)$, so if $D(q) _{q=1} \neq 0$, $D(q) \neq 0$.
Ger: The generic Hecke algebra is semisimple.
Proof: The specialization to $q=1$ is QTW7, which is semisimple.
Horeover, we have the following changer realt:
Theorem (Tits' Deformation than): $ j $ H ₂ , H ₂ are semisimple, then H ₂ \cong H ₂ obstractly.
Proof: By the previous proposition, the discriminant on H is nonzero, so $H \otimes \overline{C(q)}$ is a product of matrix algebras over $\overline{C(q)}$, of dimensions $n_{1,\dots,n_{R}}$, "the numerical invariants". It sillies to show the numerical invariants for Hz are the same: $n_{1,\dots,n_{R}}$.
Adjoin formal variables X_w for $w \in W$ and consider $H_{\overline{CG}} \otimes \overline{CG}(x_w: v \in W)$, in order to write a "generic element" $a = \sum x_w \delta_w$. Let $P(t)$ be its char poly, say $P(t) = \prod P_i(t)^{c_i}$ in $\overline{CG}(t, x_w: w \in W)$ is the decomp into irreds. Since $H_{\overline{CG}} \otimes \overline{CG}(x_w: w \in W) = \prod H_{n_i}(\overline{CG})(x_w: w \in W)$, it has a basis $\{E_i\}$ for each entry in each summand. So varite $a = \sum y_i f E_i^{c_i}$ for $y_{ij}^{c_i} \in \overline{CG}(x_w: w \in W)$. The drame of basis matrix has entries in \overline{CG} so $\overline{CG}(x_w: w \in W) = \overline{CG}(y_{ij}^{c_i})$ in this basis,
$P(t) = TT det(tid - y_{ij})^{n_{e}}$ Now specialize y_{ij}^{e} so that the det(tid - y_{ij}^{e}) are irred and distinct. Then $P_{e}(t) = det(tid - y_{ij}^{e})$ and $e_{e} = n_{e} = deg P_{e}(t)$.

Gind	lusion :	H	≠ {0	r sini	LYÌL	7	j2	i som g	rphic	ło	Cl	WJ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
When	exact type A	^γ γ	Whe	never	2	;¢	{	(g) =	0 9 9	. TI	his a	nounts	to:	H.	j\$ 55	.1	. Z	2 (luos)	عدينا	2.[(w) Z	≠ 0	• •	•		•	•	•	•		•
tor	type A	, This	. Gijinið lj	nts. Ta	· · .	H _{2.} H	૬ કઠ્	Η	ocder	(z) :	> N	or il	M.7,	3,. ŧ	=Q 4	هس جزال	<i>لاج</i> .	•		٠	•	•	•						٠	
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•						•	
٠																														
	• •																													
	• •																													
	• •																													
	• •																													
	• •																													
	• •																													
		٠	•	٠		٠	٠	•	٠	•	٠	•	•	٠	٠	٠	٠		٠	٠	•	•	٠	٠	٠	•	•	٠	٠	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0				٠		٠			٠		٠				۰	•	٠			٠			٠	٠	٠				٠	
٠	• •		•			•		•		•	•	•	•		•		•	•				•			•			•	•	
	• •																													
	• •																													
0						•					٠				٠								٠		٠				٠	
						٠											٠								•				٠	
٠	• •		٠	•	•	•		•	•	•	•	•	•		•		•	٠	•			•			•	•	•	•	•	•
	• •																													
٠	• •		•			٠					٠				٠	•	٠					•		•	٠				٠	
																												•		•

Alline Hecke algebras and	1 d · · · · · · · · · · · · · · · · · ·		• • •					
0	d their representation	.				• •		• •
Affine Hecke algebras and Reference for 2nd half Mit	T-Northeastern .2017. D	AHAEHA semi	nar notes.			• •		
Offinition: not quite H(W,S) fo	r Walline, but close.	· · ·	· · ·	· · ·		· ·		
· Reductive p-adic groups			• • •					• •
Example: G= GL.(Qp),	I∈GLu(2p) ⇒ luchan slagnup	C. (I\G/I	;) = 7	(Wall, 5= p)	"lucibər	i spherical	aljebra	
 K-theory 		• • •	• • •			• •		
G complex ss simply connected				ringer resolution	tion, Z:	$= \widehat{N} \times \widehat{N}$	"Steinberg	varicty".
Then $K^{6}(2) = 2/[$	[Wall] and K ^{6×C}	*(Z) = H	4			• •		• •
· First step to understand	Cherednik aljebras					• •		
				 				• •
Immediate problem: Tits					s becomes	much anon	e involved	· · ·
(For the rest ! use a sigle	reference : Mac Doold,	AHAs and	orthgonal	polynomials)	·		• • •	
			• • •	• • •	• • •	• •		
Affine stuff	and RCV	Here V	 	ioner andert	 	mbed V C	\\ @ (C)	12 41-23
Affine stull Fix a finite irreducible reduced Then the associated affine root sy	system RCV. New is R° = for+nd	Here V ne245 CF	has an	inner product	, , , , , , , , , , , , , , , , , , ,	mbed V C	5 ¥ €	5, with S⊥ 1→C
Affine stuff Fix a finite irreducible reduced Then the associated affine root sy Writing $\alpha' = \frac{2\alpha'}{(\alpha,\alpha')}$, we have	system $R \subset V$ then is $R^{a} := 1 \alpha + n \delta$ $Q := \sum_{\alpha \in R} 2 \alpha \mod \delta$	Here V n = 24 C F Q ² = 5202 [°] r [×] 68 [°]	has an const littic	inner product	· · · · · ·	mbed V C	V⊕(C	5, with S⊥ 1→C ×→S
Fix a linite irreducible reduced Then the associated affire root sy	system $R \subset V$ then is $R^* = 1 \alpha + n \delta$ $Q := \Xi Z \alpha$ root lattice $\alpha \in R$	Here V n = 24 C F Q [×] = 220 [×] n [×] 68 [×]	has an consot lettic	inner product		mbed V C	5 : V 7 ⊕ €1	S, with S \perp ($\rightarrow C$ × $\mapsto 1$
Fix a linite irreducible reduced Then the associated affire root sy	system $R \subset V$ then is $R^* := \frac{1}{\alpha + n}$ $Q := \frac{2}{\alpha + n}$ $x \in R$	Here V n = 24 C F Q ² = 5202 ² R ² 68 ²	has an consot lettic	inner product		mbed V C	δ : V δ : V	S, with S⊥ (→C ×→2
Fix a linite irreducible reduced Then the associated affire root sy	system $R \subset V$ then is $R^{*} = \frac{1}{\alpha} + n \frac{1}{\alpha}$ $Q := \frac{1}{\alpha} \frac{1}{\alpha} + n \frac{1}{\alpha}$ $Q := \frac{1}{\alpha} \frac{1}{\alpha} \frac{1}{\alpha} + n \frac{1}{\alpha}$	Here V n = 25 C F Q [×] = 2202 [×] x [×] 68 [×]	has an consot lettic	inner product		mbed V C	- V Φ C 	5, with S⊥ (→ C × ↦ 2
Fix a linite irreducible reduced Then the associated affire root sy	system $R \subset V$ then is $R^* := \frac{1}{\alpha} + n \frac{1}{\alpha}$ $Q := \frac{2}{\alpha} \frac{2}{\alpha} root$ bittice	Here V n = 245 C F Q [×] = 220c [×] n [×] 68 [×]	has an	inner product		mbed V C	δ . V δ . V 	5, with S⊥ (→ C × ↦ 2
Fix a linite irreducible reduced Then the associated affire root sy	system $R \subset V$ ten is $R^{a} := \frac{1}{\alpha} + n\delta$ $Q := \frac{2}{\alpha} R^{a}$ root bittice R^{a}	Here V n = 24 C F Q [×] = 2202 [×] x [×] 68 [×]	has an	inner product		 mbed V C 	ν Φ C δ	S, wi-lh S⊥ (→ C × ↦ 1
Fix a linite irreducible reduced Then the associated affire root sy	system $R \subset V$ then is $R^* := \frac{1}{\alpha} + n \frac{1}{\alpha}$ $Q := \frac{2}{\alpha} \frac{2}{\alpha} root$ bittine R^*	Here V $n \in \mathcal{U} \subseteq C$ F $Q^{v} = \mathbb{Z} \mathcal{U} e^{v}$ $n^{v} \in R^{v}$	has an	inner product		mbed V C	 V ⊕ C δ N δ δ N δ δ<	S, with S⊥ (→ C × ↦ £
Fix a linite irreducible reduced Then the associated affire root sy	$Q = \sum_{\alpha \in R} Z \alpha$ root lattice		has an	inner product		- · · · · · · · · · · · · · · · · · · ·	Υ Φ C	S, wi-lh S⊥ (→ C × ↦ 1
Fix a finite irreducible reduced Then the associated affire root sy Writing $\alpha' = \frac{2\alpha}{(\alpha,\alpha)}$, we have	R^{c} $W^{c} \geq \langle S_{a} : a \in \mathcal{A}$		has an	inner product		mbed V C		S, with S \perp $f \rightarrow C$ $\times \rightarrow 1$
Fix a finite innotucible reduced Then the associated affire root sy Writing $\alpha ' = \frac{2\alpha}{(\alpha, \alpha)}$, we have R R Then $W = \langle S_{\alpha} : \alpha \in R \rangle$ For $v \in V$, denote $t(v) : V$	R^{c} $W^{c} \geq \langle S_{a} : a \in \mathcal{A}$		has an	inner product		mbed V C	Υ ⊕ C	S, wi-th S⊥ (→ C × → 'L · · · · · · · · · · · · ·
Fix a finite irreducible reduced Then the associated affire root sy Writing $\alpha' = \frac{2\alpha}{(\alpha,\alpha)}$, we have	R^{c} $W^{c} \geq \langle S_{a} : a \in \mathcal{A}$		has an	inner product		mbed V C		$S, w_i - h_k S \perp$ $f \rightarrow C$ $x \rightarrow k$
Fix a finite innotucible reduced Then the associated affire root sy Writing $\alpha ' = \frac{2\alpha}{(\alpha, \alpha)}$, we have R R Then $W = \langle S_{\alpha} : \alpha \in R \rangle$ For $v \in V$, denote $t(v) : V$	$Q := \frac{2}{\alpha} e^{R}$ R^{2} $W^{2} := \langle S_{\alpha} : \alpha \in \mathbb{R}$ $W^{2} := \langle S_{\alpha} : \alpha \in \mathbb{R}$ $W^{2} := \langle S_{\alpha} : \alpha \in \mathbb{R}$		has an	inner product		mbed V C		
Fix a finite innotucible reduced Then the associated affire root sy Writing $\alpha ' = \frac{2\alpha}{(\alpha, \alpha)}$, we have R R Then $W = \langle S_{\alpha} : \alpha \in R \rangle$ For $v \in V$, denote $t(v) : V$	$Q := \frac{2}{\alpha} e^{R}$ R^{2} $W^{2} := \langle S_{\alpha} : \alpha \in \mathbb{R}$ $W^{2} := \langle S_{\alpha} : \alpha \in \mathbb{R}$ $W^{2} := \langle S_{\alpha} : \alpha \in \mathbb{R}$		has an			mbed V C		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Zevo bas of R:	Zevo bass of R	· · · · · · · · · · · ·
Where Chowsters	al coves affine und	
Consider the "fundamental alcare". This is an n- These are the simple affire roots. Note of a Fo	simplex with n+1 walls given by a set: if $B \in \mathbb{R}^+$ is the history of $a_0 = 10^{-10}$	Nive walls corresponding to some $a_0, a_1,, a_n \in \mathbb{R}^{2}$.
$A_{\pm} = S_{0,\pm} = S_{1}$		
Notice that $W^{ae} = W \propto t(P^{*})$ (compart on we have that $W^{ae} = W \propto t(P^{*})$		EL CONTRACTOR
This admits a fleright function extending that of 1	$\Omega = C_3 \qquad A_1 = C_4$	
We have $SZ = P^*/Q^*$ (Dyukin diagram adamorphisms if $\pi_r(a_i) = q_j$, $\pi_r S_i \pi_r^- = s_j$, hence the semaidirect	5) and W ^{ae} = SZ K W ^e Note product	that $\Omega C A \sim \Omega C all re simple roots, so$
Braid groups The Braid group of a Coxeter system is the group $The Braid group of a Coxeter system is the group The Braid relation is equivalent to : T_m Twi = T_{wwi}$	generated by $\{T_w : w \in W \}$, subject only to whenever $l(wwi) = l(w) + l(wi)$.	the braid relation.
Define the affine braid group Bas that of (W		
B^{ae} has two important subgroups . The elements $T_{\overline{11}}$ with $\overline{11} \in \Omega$ form a subgroup of B^{ab}	e isom to SL (obrs), and $B^{4e} =$	S X B ⁴ , where if The (ai) = aj, The Tittet = Ti.
• For $\lambda \in P_{+}^{\vee}$, define $Y^{\lambda} = T_{f(X)}$, for $\mu - \sigma \in$		

Proposition: Tr, J': LEP generate Bre as a group (notice the abance of To)
$\begin{aligned} & I_i (\lambda_i \alpha_i) = 0 \text{then} T_i : Y^{\lambda} = : Y^{\lambda} T_i \\ & (\lambda_i \alpha_i) = 1 \text{then} T_i : Y^{\lambda} = : Y^{\lambda} T_i^{-s_i \lambda} (:Y^{\lambda} = : T_i : Y^{s_i \lambda} T_i) \end{aligned}$
(idea: reduce to $\lambda \in \mathcal{P}_{+}^{\vee}$ and use properties of the length function)
The previous proposition leads to a presentation of B^{ae} reminiscent of $W^{ae} = W \times t(P^{*})$:
$B^{ee} = \langle T_{a_{1}\cdots,}T_{a_{j}} \ y \stackrel{p^{o}}{} \rangle \frac{T_{i} \ y^{\lambda} + y^{\lambda} T_{i}}{T_{i} \ y^{\lambda} = y^{\lambda} T_{i}^{-s_{i}\lambda}} \left(\begin{array}{c} (\alpha_{i}, \lambda) = \sigma \\ (\alpha_{i}, \lambda) = 4 \end{array} \right)$
We can finally state:
Definition (AHA): The affine Hecke algebra H (W ^{ne}) is the quotient of the group algebra of B ^{se} by the Hecke relations: (Ti-q)(Ti+q ⁻¹)=0
How do the Ti and Y^{n} interact in $H(W^{ne})$?
Lemma: $T_i Y^{\lambda} - Y^{s(i)} T_i = (q - q^{-1}) \frac{Y^{s(\lambda} - Y^{\lambda}}{y^{-a^{\nu}} - 4}$
Proof: A calculation shows that if this holds for Y ^h and Y ^M , then it holds for Y ^{-h} and Y ^{h+M} . So two cases to check:
• $(\lambda, \alpha_i) = 0 \Rightarrow \text{ this says } T; Y^{\lambda} = Y^{\lambda} T;$ • $(\lambda, \alpha_i) = 1 \Rightarrow \text{ this says } T; Y^{\lambda} - Y^{\text{si(M)}} T; = (q - q^{-1}) Y^{\lambda}$ "(<i>Pap</i>) $T; Y^{\lambda} - T; Y^{\lambda} = T; Y^{\lambda} - (T; + q - q^{-1}) Y^{\lambda}$ as desired D We have given two presentations of $B^{\alpha e}$: Goverter ($B^{\alpha e} = \Omega \times B^{\alpha}$) and Bernstein ($B^{\alpha e} = (T; Y^{\lambda} , 7)$). This implies the following:
$\begin{array}{l} \begin{array}{lllllllllllllllllllllllllllllllll$
Fact: as C-v.s., $H(W, S) \stackrel{o}{=} CY^{p^{v}} \xrightarrow{\sim} H(W^{ae})$, so $T_{w}Y^{\lambda} : w \in W, \lambda \in P^{v}$ is another basis.
This map allows us to construct many representations of $H(W^{ae})$: for E a rep of $H(W,S)$, $IndE:= H(W^{ae}) \otimes E$ As a $CY^{p^{u}}$ -module, $IndE = CY^{p^{u}} \otimes E$. In particular, if $E = C$ by specializing $g = \tau$, we get $CY^{p^{u}}$ "Polynomial representation" Now the last femma implies that T_{i} acts by $Tsi + (\tau - \tau^{u}) \frac{si - 1}{Y^{av} - 1}$ in $CY^{p^{u}}$
Remarks: One can modify this action to $\beta: T_i \mapsto z_i + (z - z^{-i}) \frac{S_i - 1}{\chi^{a_i} - 1}$ now acting on CLXI (group algebra of the weight lettice) $T_r \mapsto T_r$ This is called Cheredrick's basic representation. • Both of these representations are flathful. • In fact DAHAs can be defined as the 2-parameters (q.z) subalgebra of End _c (CLXI), gan by $\chi^{a}(T_w)$ ($\lambda \in P$, $w \in W^{ac}$).

(hearein :	5 (H	(Wee))	= (•	4H[A	•	•	•	• •	•	•	•	•	•	•	•		•	•	•	•	•	•	•
Drosf :	2) Eas Sine	4: \$ e CY	f = f(4 p* is	() ∈ (() (⊃wi	y ^{pu}) ⁿ mutativ) e an	lif-	JT Ti	i = (ond f) D	γ `	(sinc Seneral	e -	τ _ε γ J.e	`_` 7((Η(I Α _{ε:(Y)}	Ti N ^{ec})	= , (.).,	9 - 9	, ;*) ,	Y six Y - el	- Y	() - 1 -	Ьу	our∕	lemma	.).
	⊆) By }													•	•	•	•	•	•	•	•	•	•	•	•	•	•
· · · ·	So herce	it office its in	us to Naje	fice 75 Q	that	t fe rent pe	5 QY Kynomi	ρ ^v al.	Naw Bit	un the 1	der Solync	the puly mial	nomial repres	l re ortati	pvesen DA is	tation s fai	thfol	C Y ¹ 30	₽° , ,	j e C	(Junio Y ^{P^V}	nutes D		h a l l	Loure	at pu	kynor
 			•	•	• •	• •	•	•			•	••••	•	•	•	•	•	•			•	•	•	•	•	•	
· · ·			•	•	• •	•••	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•		•	•	•	
		• •	•	•	• •	• •	•	•	•		•	· ·	•	•	•	•	0	•	•	•	•	•	0	•	•	•	•
	• •		•		• •		•	•		•	•	• •		•	•		•		•	•		•	•		•	•	•
		• •	•		• •	• •	•	•	•	•	•	• •		•	•		•	•	•	•		•	•	•	•		•
· · ·		· ·	•	•	• •	 	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
••••	• •		٠	٠	• •		0	٠		0	٠	• •	٠	٠	٠	٠	٠	٠	٠	0	٠	٠	٠	٠	٠	•	•
	• •		٠	•	• •		٠	•	•	÷	•	• •		•	٠		٠	٠	٠	÷	·	•	٠	٠	•	•	•
· · · ·	• •				• •		۰			0	•	• •		•	٠		•	٠	٠	ø	٠	•	٠	٠	•	•	•
					• •					0	•	• •	٠		٠	•	٠	٠	•	0	٠	•	٠	٠	0	•	•
· · · ·			٠		• •		٠	•		0	•		•	٠	•	•	•	٠	٠	0	٠	٠	٠	٠	ø	•	•
	• •																										