
1 Hindman’s Theorem

We illustrate an approach to topological dynamics via ultrafilters, using Hindman’s The-

orem as an example. The statement had been conjectured in 1968 [1] and popularised

in 1972 by its appearance in [2] and Erdős’ interest in the problem. In 1974, Hindman

proved the result using a complicated combinatorial argument.

Definition 1.1. Given B ⊂ N, the set of finite sums of distinct elements of B is

FS(B) =

{∑
b∈C

b : C ⊂ B, C is finite

}
.

Theorem 1.1 (Hindman, 1974). For any finite colouring of N, there exists an

infinite set B ⊂ N such that FS(B) is monochromatic.

This is a substantial strengthening of Schur’s Theorem. We will also prove as a corollary

Folkman’s Theorem, the generalisation of Schur’s Theorem for sets of any finite size.

This proof follows [3], but was originally due to Glazer and Galvin (1975). The simplicity

of the arguments that resulted from the algebraic translation of topological dynamics

raised great interest; similar ideas would later be used in order to prove Hales-Jewett,

Ramsey and a number of other Ramsey-type theorems.

The translation is as follows. Instead of the usual colouring shift map T : X → X (see [4]),

we consider the underlying semigroup N that acts on X by n∗c = T nc. We then embed N
(with the discrete topology) into a compact Hausdorff space βN, such that the action of N
extends to an action of βN. In this case we will have {T nc : n ∈ βN} = {T nc : n ∈ N}. The
space βN is called the Stone-Čech compactification of N. To this end, the compactification

should have the property that N is a dense subset.

We will seek an element U ∈ βN such that U ⊕ U = U . This implies the existence

of a particular kind of recurrent point in the space of colourings. Using this, we prove

Hindman’s Theorem.

We start by stating the definition of an ultrafilter.

Definition 1.2. Let X be a set. An ultrafilter on X is a collection U of subsets of X

such that:

(i) ∅ ̸∈ U ;
(ii) if A,B ∈ U , then A ∩B ∈ U ;
(iii) if A ⊃ B and B ∈ U , then A ∈ U ;
(iv) if A ⊂ X, either A ∈ U or AC ∈ U .

A family of subsets satisfying only (i), (ii) and (iii) is called a filter.
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Lemma 1.1. Given a family of sets A = {Ai : i ∈ I} such that no finite intersection

of them is empty, there exists an ultrafilter U containing the family A.

Proof. We can ‘complete’ the collectionA adding all finite intersections inA and supersets

of these sets. This collection is clearly a filter.

We use Zorn’s lemma. The collection of filters containing A is partially ordered under

set inclusion. Since every chain has an upper bound, namely the union of all the filters

in the chain, by Zorn’s lemma there exists some maximal filter U .

Now if A ̸∈ U , by filter maximality, adding all supersets of A to U would fail (ii). So there

is B ∈ U satisfying A ∩B = ∅. Now B ⊂ AC , so AC ∈ U . So U is an ultrafilter.

For our purposes, we may now restrict our attention to the ultrafilters on N.

Definition 1.3. The Stone-Čech compactification of N is

βN = {U ⊂ P(N) : U is an ultrafilter on N}.

Equip βN with the topology generated by open sets of the form ⟨A⟩ = {U ∈ βN : A ∈ U},
where A ⊂ N. Note that the elements of the basis are closed under intersections, so the

topology is well defined.

Additionally, whenever A ⊂ N, we have βN \ ⟨A⟩ = ⟨N \A⟩, and so every set in the basis

is clopen (both open and closed).

Definition 1.4. An ultrafilter of the form Un = {A ⊂ N : n ∈ A} for some n ∈ N is

principal.

An ultrafilter is principal if and only if it contains a finite set. Indeed, if U contains

A = {a1, ..., am}, we note that
⋂

i A \ {ai} = ∅ ̸∈ U . So U cannot contain all the sets

{a1}C , ..., {am}C , and thus it must contain some singleton {ai}. It is then clear that U is

principal.

The embedding N → βN is given by n 7→ Un. It is easy to see that every open set in βN
contains some Un, and so the image of N is dense in βN.

Proposition 1.2. The space βN is compact.

Proof. We use the following formulation of compactness: assume that {⟨Ai⟩}i∈I is a family

of complements of basic open sets whose finite intersections are nonempty. Our aim will

be to show that ⋂
i∈I

⟨Ai⟩ ≠ ∅. (1)

It is clear that ⟨Ai1⟩ ∩ · · · ∩ ⟨Aim⟩ = ⟨Ai1 ∩ · · · ∩ Aim⟩ and that ⟨C⟩ = ∅ iff C = ∅. Now

as the ⟨Ai⟩ have nonempty finite intersections, so do the Ai. Hence by Lemma 1.1 we
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may take an ultrafilter U such that Ai ∈ U for all i ∈ I. Clearly this element lies in the

intersection (1).

Proposition 1.3. The space βN is Hausdorff.

Proof. Take U ,V ∈ βN with U ̸= V . Pick A ⊂ N such that A ∈ U but A ̸∈ V . Then

AC ∈ V by (iv) and so U ∈ ⟨A⟩, V ∈ ⟨AC⟩ and, since ultrafilters cannot include disjoint

sets, ⟨A⟩ ∩ ⟨AC⟩ = ∅.

We now show that the notion of addition in N extends to an addition in βN. For A ⊂ N
and n ∈ N, we define A− n = {a− n : a ∈ A}.

Definition 1.5. Given two ultrafilters U ,V on N, the sum of U and V is given by

U ⊕ V = {A ⊂ N : {n ∈ N : A− n ∈ U} ∈ V} .

One checks that the sum of two ultrafilters is an ultrafilter, and that this operation is

associative. To gain some intuition on this addition, we prove that it actually extends the

usual addition on the natural numbers.

Proposition 1.4. For any a, b ∈ N, the principal ultrafilters Ua,Ub ∈ βN satisfy

Ua ⊕ Ub = Ua+b.

Proof. The elements in Ua ⊕ Ub are precisely the subsets A ⊂ N satisfying

{n ∈ N : A− n ∈ Ua} ∈ Ub.

Recall that any particular subset of natural numbers lies in the ultrafilter Ub if and only

if it contains the element b. Therefore these are the subsets satisfying

b ∈ {n ∈ N : A− n ∈ Ua}.

In other words, these are the subsets such that A− b ∈ Ua. But this condition is the same

as a ∈ A − b, which is equivalent to a + b ∈ A. Therefore the elements in Ua ⊕ Ub are

precisely the subsets containing a+ b, i.e. the elements in Ua+b.

It is perhaps surprising that this addition is not commutative. In fact, the sum commutes

if and only if at least one of the elements is a natural number [4]. We now prove the

existence of an idempotent, the key element for the proof of Theorem 1.1. We will need

the following lemma.

Lemma 1.5. Let U ∈ βN. The map ΨU : βN → βN given by ΨU(V) = U ⊕ V is

continuous.
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Proof. We consider the preimage of an element of the basis ⟨A⟩. We have Ψ−1
U (⟨A⟩) =

{V ∈ βN : A ∈ U ⊕ V} = {V ∈ βN : {n : A− n ∈ U} ∈ V} = ⟨{n : A− n ∈ U}⟩. This is
open.

Theorem 1.2 (Ellis-Numakura for βN, 1958). The space βN contains some idem-

potent, that is, there exists U ∈ βN such that U ⊕ U = U .

Proof. For S, T ⊂ βN, define S ⊕ T = {U ⊕ V : U ∈ S, V ∈ T}. Consider

P = {S ⊂ βN : S closed, S ̸= ∅, S ⊕ S ⊂ S}.

This is partially ordered under inclusion. We know βN is compact by Proposition 1.2, so

all elements of P are compact. Hence, by Cantor’s intersection theorem, every descending

chain of such sets has nonempty intersection, an element of P. Thus, by Zorn’s lemma,

there exists some minimal nonempty set K ∈ P. Take some U ∈ K. We will show that U
is idempotent.

First, we show that K = {U} ⊕ K. Let K ′ = {U} ⊕ K. Notice that U ⊕ U ∈ K ′ so

K ′ ̸= ∅. We also have that

K ′ ⊕K ′ = {U} ⊕K ⊕ {U} ⊕K ⊂ {U} ⊕K ⊕K ⊕K ⊂ {U} ⊕K = K ′.

Further, K ′ is the image of the compact set K under the continuous map from Lemma

1.5 to a Hausdorff space (by Proposition 1.3). Hence K ′ is closed and so we conclude

K ′ ∈ P. Since K ′ = {U} ⊕K ⊂ K ⊕K ⊂ K and K is minimal, necessarily K = K ′.

Now we consider

K ′′ = {V ∈ K : U ⊕ V = U}.

We have just shown that K ′′ is nonempty, since {U} ⊕ K = K ∋ U . K ′′ is also closed

because it is the intersection of the closed sets {V ∈ βN : U ⊕ V = U} and K, the former

being the preimage of the closed set {U} =
⋂

A∈U⟨A⟩ under the continuous map from

Lemma 1.5.

Finally, to show K ′′ ⊕K ′′ = K ′′, take V ,W ∈ K ′′ arbitrary. Then

U ⊕ (V ⊕W) = (U ⊕ V)⊕W = U ⊕W = U .

So K ′′ ∈ P, and again by minimality, K ′′ = K. Therefore U ∈ K ′′ and so U ⊕U = U .

Finally, we are ready to prove Theorem 1.1. The following part of the proof is a simplifi-

cation due to Strauss [5, 6].

Proof of Theorem 1.1. Suppose N = C1 ∪ · · · ∪Ck is the partition into the colour classes.
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Pick an idempotent U in βN. It contains some A = Ci, as otherwise it would contain

CC
1 ∩ · · · ∩ CC

k = ∅. We construct a sequence B = {n1, n2, . . . } such that FS(B) ⊂ A.

Let A∗ = {n ∈ A : A−n ∈ U}. As U is idempotent, A∗ ∈ U . We note that this is true for

any set A ∈ U . Choose some n1 ∈ A∗; we note that trivially FS({n1}) ⊂ A∗. We proceed

inductively. Assume that we have found distinct n1, ..., nm with F = FS({n1, . . . , nm}) ⊂
A∗.

Claim: For each ν ∈ F , A∗ − ν ∈ U .

By definition, if ν ∈ A∗, we have A − ν ∈ U . Hence the set (A − ν)∗ = {n ∈ A − ν :

(A− ν)− n ∈ U} is an element of U . Now

(A− ν)∗ = {n ∈ A− ν : A− ν − n ∈ U}
= {n′ ∈ A : A− n′ ∈ U} − ν

= A∗ − ν,

where we have set n = n′ − ν. Thus A∗ − ν ∈ U . This proves the claim.

Note that F is finite. Analogously with the proof of Lemma ??, pick

nm+1 ∈ A∗ ∩
⋂
ν∈F

(A∗ − ν) ∈ U

Clearly FS({n1, . . . , nm+1}) ⊂ A∗. Notice at this point that since no element in N is

idempotent, the sets in U must all be infinite. Therefore, we may take nm+1 strictly

greater than n1, . . . , nm. Letting B = {n1, n2, n3, . . . } yields FS(B) ⊂ A∗ ⊂ A, as

required.

As a corollary of Theorem 1.1, we immediately obtain Folkman’s Theorem:

Theorem 1.3 (Folkman, 1968). Given r ∈ N, in any finite colouring of N there

exists a finite subset S ⊂ N of size r such that FS(S) is monochromatic.
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[5] Hindman N. Algebra in the Stone-Čech compactification and its applications to Ram-

sey theory. Scientiae Mathematicae Japonicae. 2005;62:321-9.

[6] Hindman N, Strauss D. Algebra in the Stone-Čech compactification. Reading, Mas-
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