0. Introduction

This is my personal (yet explicit) account of the second part of the paper, which concerns mostly. The following.
Theorem 10.1: Let V be a ρ Pinite g-inept with $h w \lambda$: Then there is an exact square of g-modules

$$
\begin{aligned}
& 0 \leftarrow V \leftarrow C_{0}^{v} \leftarrow C_{1}^{v}-\ldots \leftarrow C_{s}^{v} \longleftarrow 0 \\
& \text { where } s=\operatorname{dim} M, \quad C_{k}=\oplus_{\omega \in W^{(k)}} M_{w(\lambda+S)} \quad \text { where } W^{(k)}=\{\omega \in W: \ell(\omega)=k\} \\
& M_{x+g}=\text { Vera of haw. } \lambda
\end{aligned}
$$

This is now Known as a BGG resolution, and part of its significance lies in that it categorifies Kortant's multiplicity formula, and hence essentially rategorifies Dey's character formula. Indeed, taking formal characters in the resolution we get

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{ch}(V)=\sum_{k \geqslant 0}(-1)^{k} c h C_{k}^{v}=\sum_{k>0}(-1)^{k} \sum_{\substack{\mu \in \Sigma \\
\mu+\delta \text { domionk }}}\left(C_{k}^{v}: M_{\mu+\rho}\right) \text { ch } M_{\mu+j} \\
(\Sigma=\text { simple routs })
\end{array} \\
& \text { (} \Sigma=\text { simple roots) }
\end{aligned}
$$

so that $a(\lambda, \mu)=\sum_{k \geqslant 0}(-1)^{k}\left(C_{k}^{v}: M_{\mu+\delta}\right)$ for $\mu+\delta$ dominant.
coefliciats of
change of basis;
def med in the introduction
of the Part. III. Essay
Therefore $\quad d V=\sum_{\mu \text { domino }} a(\lambda, \mu) \sum_{\omega \in W}(-1)^{p(\omega)}$ ch $M_{w \mu+\rho}$, from which Kostant's multiplicity follows.
8. The category θ

This part summarizes some basic properties of the rategary. θ, most of which appear in the Part III essay. I state the farts that are not motioned explicitly in it.

Central characters: define $\quad \Theta=\operatorname{Hom}_{c \text {-and }}(Z(g), \mathbb{C})$
Also given M any g-module, dense $\Theta(M)=\{\theta \in \Theta: \theta$ is a central character of $M\}$
$=\{\theta \in \Theta: J m \in M$ sit. $z m=\theta(k) m$ for all $z \in Z(g)\}$
$=\left\{\theta \in \Theta\right.$ appearing in the block decomposition of $M=\underset{\theta}{\oplus} M^{\theta}$
where $M^{\theta}=\left\{m \in M:(z-\theta(z))^{n} m=0\right.$ for sone $\left.n \geqslant 0\right\}$
Naming: the Vera modules are taken shifted so in this paper there is no dot action, here if we write $\Theta\left(M_{x}\right)=\left\{\theta_{x}\right\}$, ae get. $\theta_{x_{1}}=\theta_{x_{2}} \Leftrightarrow x_{1} \in \underbrace{W x_{2}}_{\text {anal }}$
Verima, heme $x-\rho$
Fact: for $x, \psi \in h^{*}$,

I naxero, it is an inclusion ie. "orly Verna abodes"

In particular $\quad M_{x} \rightarrow M_{\psi}$ nonzero $\Rightarrow x \in W \psi$ and $x \leq \psi$ (bat this is not sellicirat)
Next they denote the Bruhat oder by \leq and state the following variation of the above fact:
If $x \in D$ (is integral dominant)

$$
H_{m}\left(M_{m_{1}, x}, M_{w_{2} x}\right)=\mathbb{c} \leftrightarrow w_{1} \leqslant w_{2}
$$

Co note, suborned of. M_{x} (apoutenoi)
Seeing how this follows respires sone Whey sap combiantorical facts, which follow directly from Prop. 4.1. in the Essay:
(l emus 8.10, 8.11)
They finally state Theorem 8.12: $\left[M_{y}: L_{x}\right] \neq 0$ ill $x \nmid \psi$

T This is hard, the Appodix proves it bi f better re e the cohomological, self-catbined proof in Jantion II. 6 .

Cordlary: If $x \in D$, the Jordan-Holder decamp of $M_{w x}$ all has terms. $L_{w ' x}$ with $w^{\prime} \leqslant w$ and (of core) $\left[M_{w x}: L_{w x}\right]=1$

Warning: even if $\psi \in D, \quad M_{\psi}$ may contain submodias not generated by sums of $M_{w \psi}$'s.
9. Lie algebra cohomology

This part summarizes some basic farts abate. Lie alecba cohomolosy.

- n is any complex Lie algebra. Throyhat. M, N are $U(a)$-modes.
- $\tau: a \rightarrow a$. (this extends to $U(a) \rightarrow U(a)$).

$$
x \mapsto-x
$$

- N^{τ} is the module N with $U(a)$-multiplication $X \cdot n=\tau(X) n$.

Some homological algebra farts:
a) $E x t^{i}(M, N)^{*}=T_{o_{i}}\left(N^{*}, M\right)$
(here ()* denotes C-linear dual).
b) $\operatorname{Tor}_{i}\left(N^{*}, M\right)=\operatorname{Tor}_{i}\left(M^{2},\left(N^{2}\right)^{*}\right)$

Now $H^{i}(a, M)$ is defined as Ext (\mathbb{C}, M) ((trinal a-rep). H is compared using the Chevalley-Elenbery resolution $V(a)$ of \mathbb{C} :
$C_{k}=U(a): \Lambda^{k} a \quad$ Since $\Lambda^{k} k$ sa foe \mathbb{C}-mole, this is a free (left) U(a)-modle.
with differatial $d_{i} C_{k} \rightarrow C_{k}$.
given by $d_{k}\left(x \otimes x_{1} \wedge \wedge \wedge x_{k}\right)=\sum_{i=1}^{k}(-1)^{i+1}\left(x x_{i} \otimes x_{1} \wedge \ldots \wedge \hat{x}_{i} \wedge \ldots x_{k}\right)+\sum(-1)^{i+j}\left(x \otimes\left[x_{i}, x_{j}\right] \wedge x_{1} \wedge \ldots \wedge \hat{X}_{i} \wedge \wedge \wedge \hat{x}_{j} \wedge \ldots \wedge x_{k}\right)$
$1 \leq \ll j \leq k$
Denoting $\varepsilon: C_{0} \rightarrow \mathbb{C}$ we get a free complex $\quad 0 \rightarrow C_{\text {dina }} \rightarrow \ldots \rightarrow C_{1} \rightarrow C_{0} \rightarrow \mathbb{C} \rightarrow 0$
$X \in U(a) \mapsto$ coolliciat of 1
To see that it is exact, take a lie group whose lie algebra is an. Then $V(a)$ is the chat of the de Rheum complex. of formal andytic forms. This also works for the relative. cape below.
Applyiz $\operatorname{Hom}_{\text {ala) }}(-, M)$ and taking cohomelogy drops we get Ext ${ }^{i}(\mathbb{C}, M)=H^{i}(a, M)$
Relative Lie algebra cohomolosy
Now consider a abalfebra $\beta \subset a$ and view a / β as a p-repesatation θ. We xt aralogarsly $D_{x}=U(a) \theta(\beta) \Lambda^{k}(\pi / \beta)$ and $d_{k}\left(x \otimes x_{1} \wedge \wedge \wedge x_{k}\right)=\sum_{i=1}^{k}(-1)^{i+1}\left(x x_{i} \oplus x_{1} \wedge \ldots \wedge \hat{x}_{i} \wedge \ldots x_{k}\right)+\sum_{\wedge \leq i<j \leq k}(-1)^{i+j}\left(x \otimes \overline{\left[x_{i}, x_{j}\right]} \not x_{1} \wedge \ldots \wedge \hat{x}_{i} \wedge \wedge \wedge \hat{x}_{j} \wedge \ldots \wedge x_{k}\right)$
(lAts of cements in
and we set $E: D_{0} \rightarrow C$

This complex is denoted $V(a, p)$.
X old \rightarrow coelfictat of 1 in X
The paper gives a purely algebraic proof that this is a fere reorobition. The strategy is: the PBW filtration on U(a) indreen a piftiation on D_{k} which is compatible u: th the dfleratial, so we may take the complex $G V V(G, p)$ ad show that it is exact in err degree.
 Lo (l-k)-part in $S_{y} m(a / \beta)$
Gr $V(a, \beta)$ and terefue $V(a, \beta)$ is sack.
In the rest of the section, they take $k=g$ semisimple, $p=b$ Buret subalgebra.
lemma 93 is obrias: b-mod $\rightarrow g$-mod \quad is exact and $\quad\left(\mathbb{C}_{x}\right)^{g}=M_{x+\delta}$

$$
V \mapsto V^{5}:=u(g) e_{u(b)} V
$$

Definition 9.4: ψ finite ex of weights. M is said to be of type ψ if it has a (Verna pog/stavard illation) $0=M^{(0)} \subset \ldots \subset M^{(t)}=M$ with $M^{(i+1)} / M^{(i)}=M_{\psi_{i}}$ and $\psi=\left\{\psi_{0}, \ldots, \psi_{e}\right\}$.

Pad: $N=N_{(0)} \supset N_{(t-1)} \supset \ldots \supset N_{(0)}=0$ with $N_{(i)} N_{(i-1)}=C_{\varphi}$ for some weight \& N. Therefore we get

H follows from this that D_{k} is of type $\Psi\left(\Lambda^{k}(g / s)\right)$.
Nat we study the "principal black part" of D_{k} ie. if $\theta=\theta_{\rho}$. then wo study. the (still exact sue the projection is coact) complex $V(g, b)_{\theta}:$

Proportion 9.6: Write $\psi_{k}=\left\{w \rho \mid w \in W^{(4)}\right\}$. Then $\left.D_{k}\right)_{\theta}$ is of line ψ_{k}.
Proof:
Lemma 9.7: let $M_{\text {of }}$ type ψ ad $\theta \in \Theta$. The M_{θ} is d type $\psi_{\theta}:=\left\{\right.$ weights $\psi \in \psi$ sit. $\left.\theta_{\psi}=\theta\right\}$. He latter, are e the cane as asking Prod: cary: 1 . $O \subset M^{(0)} \subset \ldots \subset M^{(k)}=M$ is a Vena flay, applying the (eat) projection factor gives a the weights to be in the sere Dep filtration of M_{θ} and $M_{\theta}^{(i)} / M_{\theta}^{(i-1)}=\left(M_{\Psi_{i}}\right)_{\theta}=\left\{\begin{array}{ccc}M_{\psi_{i}} & 1 & \theta=\theta_{\boldsymbol{\gamma}_{i}} \\ 0 & 0 / \omega\end{array}\right.$ orbit by Harish-Charda).

It flatus from this that $\left(D_{k}\right)_{\theta}$ is d type $\psi\left(\Lambda^{k}(g / 6)\right)_{\theta}$, and for 9.6 . we una to shaw this is ψ_{k}.
Now for a whet $\Phi \subset \Delta$, write. $|\Phi|=\sum_{r<\Phi} \gamma$. Then sine to uergtsof f / b ar $\Delta-, \psi\left(\Lambda^{k}(g / b)\right)=\{\rho-|\Phi|$: card $\Phi=K, \Phi \subset \Delta+\}$ so that

$$
\psi\left(\Lambda^{k}(g / h)\right)_{\theta_{j}}=\left\{\rho-|\Phi|: \operatorname{card} \Phi=k, \Phi \subset \Delta_{+}, \rho-|\Phi| \epsilon W_{\rho}\right\}
$$

 Therefore it follows that

$$
\begin{aligned}
\psi\left(\Lambda^{\kappa}(g / b)\right)_{\theta_{\rho}} & \left.=|\rho-|\Phi|: \exists w \in W \text { Sf }| \Phi \mid=\rho-w_{\rho}, \operatorname{cord} \Phi=k\right\} \\
& \left.=1 \mathrm{w}^{\omega}: \omega \in W, l(\omega)=k\right\} \\
& =\psi_{k}, \text { proving } P_{\text {roo }} .9 .6 .
\end{aligned}
$$

The lat part of this section concerns te following theorem:
Proof: by induction on $f(\omega)$. $H \omega=c$ then $\phi=\phi=\Phi_{e}$

Then $\left|s_{\alpha}, \Phi\right|=w_{1} \rho-\omega^{\prime} \rho=\rho-w^{\prime} \rho-\alpha$

$$
\text { ad } \log -\omega^{\prime} \rho=\left|S_{\alpha} \Phi \cup \cup\{a\}\right| .
$$

(lain: $\alpha_{1} \in \Phi$. M. othenise $S_{\alpha} \Phi \Phi$ via, is is contained in. Δ_{+}
(Note α_{1} is simple so $S_{\alpha_{1}}$ (par ike) s positive)

(This prove e He Cain)
Finally. $\alpha \in \Phi$ so by induction, $\Phi \backslash \backslash \alpha,\}=s_{\alpha,} \Phi_{w}$ le. $\Phi=s_{\alpha} \Phi^{\prime}$ 'Vas $=\Phi_{N} \quad \checkmark$
Theorem 9.9: let V be a f.divel. g-ines with hew. λ. Then there exists an exact egenerce of U(g)-modes

$$
0 \leftarrow V \leftarrow B_{0}^{V} \leftarrow B_{1}^{V} \leftarrow \ldots-B_{s}^{v} \leftarrow 0 \quad \text { whir } \delta \cdot \operatorname{dim} n-\text { and } B_{k}^{v} \text { is .d type } \psi_{k}(\lambda)=\left\{w(\lambda+\rho) \mid \omega \in W^{(x)}\right\}
$$

The states is: we have fond ouch a secure for the case $\lambda=0$, ie. we have $B_{0}^{\mathbb{C}}$. Then pot $B_{k}^{V}:=\left(B_{k}^{\mathbb{C}} \otimes V\right) \theta_{\lambda+\rho}$

Since $-\otimes V$ is exact (as it is the right adjoint of $-\otimes V^{*}$ by finite diruscindity) and $(-)_{\theta}$ is exact, we only need to show B_{x}^{v} is of type $\psi_{k}(\lambda)$.
 H follows that B_{k}^{v} is $\&$ type $1 \lambda_{i}+w g \mid \lambda_{i}$ mephto $l V, \omega \in W^{\infty}, \lambda_{i} w g \sim \lambda_{+g} S$ Firmly, note (g.11) that if $\omega^{\prime}\left(\lambda_{i}+w_{j}\right)=\lambda_{(0)}+\rho$ then $w^{\prime} \lambda_{i} \leqslant \lambda$ (sine λ is haw.)

Corollary: Bott's theorem. If V is a g-ines, then $\operatorname{dim} H^{i}\left(n_{-}, V\right)=\operatorname{card} W^{(i)}$. unizely determined, has multiplicity 1 wit is a conjugate of the nighest weight

Prof:: $H^{i}\left(n_{-}, v\right)=E_{x} t_{n_{-}}^{i}(\mathbb{C}, v)=\operatorname{Tor}_{i}^{n}\left(V^{*}, \mathbb{C}\right)^{*}=\operatorname{Tor}_{i}^{n}-\left(\mathbb{C},\left(V^{\tau}\right)^{*}\right)^{*}$
Now tenoning the rescution. $B_{0}^{V_{1}}$ by ch gives

$$
0 \leftarrow B_{0}^{V_{1}} / M_{-} B_{0}^{V_{0}} \leftarrow \ldots \leftarrow B_{c}^{v_{1}} / M_{-} B_{3}^{v_{1}} \leftarrow 0, s=\operatorname{dim} u_{.}
$$

 $d B_{i}^{v_{1}} \subset U(x.) B_{i-1}^{v_{1}}$, the differatials are zero and the resell follows 0
10. Resolution of a f dime g-module

This part proves a stronger version of Thu 9.9, namely one where B_{k}^{v} is replaced by jot a direct sum $\underset{w \in W^{(x)}}{\oplus} M_{w(\lambda+\rho)}$:
Theorem. 10.1: let. V be a ρ dial. g-rep with, highest weight λ.. Then there exists an exact sequence of g-models:

$$
0 \leftarrow V \leftarrow \varepsilon_{0}^{v} \leftarrow C_{1}^{v} \leftarrow \leftarrow C_{0}^{v} \leftarrow 0 \quad \text { unite } s=\operatorname{dim} x_{-}, \quad C_{k}=\bigoplus_{m \in W^{(k)}} M_{\omega(\lambda+\rho)}
$$

(\mathcal{E} is the quotient map)
In order to construct d_{i}, note (88 or oternix) that each $M a x$ is a obbmodule of M_{2}. $(x$ dominant), and (8.7) any map $M_{w_{1} x} \rightarrow M_{w_{2} x}$ is a muttple of the indusion map for $w_{1}<w_{2}$ (an dzero othervix). It follows that d_{i} is given by a matrix $d_{i}=\left(d_{\left.\left.w_{1} w_{2}\right)_{w_{1} \in W^{(i)}}^{(i)}\right)}^{\substack{w_{2} \in W^{(i-1)}}}\right.$ (d complex numbers).

Recall that $w_{1} \rightarrow w_{2}$ ill $w_{1}=s_{\alpha} w_{2}$. for some simple root α and $\ell\left(w_{1}\right)=l\left(w_{2}\right)+1$.
We make same dosernations abas the Weyl group. Suppose we have $w_{1} \rightarrow w^{\prime} \rightarrow w_{2}$. Then by the Exchange lemma (Essay, Prop 4.1. (3)) if $\omega_{1}=s_{\alpha_{1}} \ldots S_{\alpha e}$ is a reduced expression, then ω_{2} is of the form.
$\mathcal{S}_{\alpha_{1}} \ldots . \hat{\delta}_{\alpha ;} \ldots \hat{s}_{\alpha_{j}} \ldots s_{\alpha e}$ for some i, j, and otherwise no ouch arc extras. It follows that between any two elemats of leyth 2 apart we either have no arcs or we have a square (by another application of the Exchange lemma)
 as above we have.

i.e. it anticommutes. This proves lemmas 10.3 and 10.4 Alternative, much longer, proofs ak provided in $₹ 11$. and allows us to define d_{i} by $d_{w, w)}^{(i)}=s(w, w)$. It is clear that $d^{(i)} \circ d^{(i+1)}=0$.

The last three lemmas prove the exactness of the sequence.
Now exathers at V is dias (ε is the quotrat map) ad exactness at C o states
Exactness at Co: The paper cites Harish-chandra (1951) bot I don't know which theorem, so I record this proof from. Humphreys' book on the category O. We need to show that the maximal submodule $N_{\lambda+\rho} \subseteq M_{\lambda+\rho}$ is the am of the $M_{S_{\alpha}(\lambda+\rho)}$ for a simple.

- Write $\alpha_{1}, \ldots, \alpha_{l}$ for the simple roots and $n_{i}=\frac{2\left\langle\lambda_{i} \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}$. Write $M_{\lambda_{j f}}=U(g) / I$ and
let $J=\left\langle I, y^{n_{i}+1}\right\rangle_{i=1, \ldots, l}$. Now if $X: U(g) / J$ is finite dimensional, vince it is a highest resht module with quotient V, it will follow that $J=N_{\lambda+\rho}$. To see finite dimesionality, it clearly ooflices to prove that the Y_{i} act locally nilpotertly, on X. Now X is spanned by (the coots q) the possible monomials $y_{i}, \ldots y_{i r}$. Since root strings have length ≤ 4, (ad $y_{i_{j}} \psi^{4}\left(y_{i_{k}}\right)=0$ for each pair (j, k). Now ip a coset $y_{i} \cdots y_{i r}$ is killed by y_{i}^{p} then the longer monomial $y_{i}: y_{i} \cdot \ldots y_{i e}$ is kited by y_{i}^{p+3}, and by induction y_{i} arks focally nipotertly.
- Now observe that $M_{s_{\alpha}(\lambda+\rho)}$ is the scbmoovle gennated by $y^{n i+1} v^{+}$. (v^{+}maximal vector in $M_{\lambda+\rho}$) B

Back to the paper, we now prove exactness inductively, so assume ne have proved exactness at $C_{0}, C_{1}, \ldots, C_{i-1}$ and let $K=$ Kerdi. In order to prase $d_{i+1}\left(C_{i 11}\right)=K$, they prove three lemmas:
lemma 10.5: Let C be a free $U(x$,$) -module with generators f_{1}, \ldots . f_{n}$ and $\zeta: C \rightarrow K$ a $U\left(x_{n}\right)$-module homomorphism such that each $\zeta\left(g_{i}\right)$ is a weight vector. Then if $\bar{E}: C / m_{-} C \rightarrow K / n_{-} K$ is suriective, ζ is surjective too.
lemma 10.6: $\quad d_{i+1}: C_{i+1} /$ n $C_{i+1} \rightarrow K /$ n.K is an injection lemma 10.7: $\quad \operatorname{dim} C_{i+1} / M_{-} C_{I+1}=\operatorname{dim} K / M_{-} K<\infty$

Proof of 10.s:
Suppose $\bar{\zeta}$ is orrjectre hat ζ is not. Assume nog that $\bar{\Sigma}\left(f_{1}\right), \ldots, \bar{\xi}\left(f_{t}\right)$ are a basis of $K / n K_{t}$ let ψ be a weight of K maximal so that $\psi^{\prime}>\psi \Rightarrow \psi^{\prime} \in \operatorname{lm}(\xi)$. let $\mathcal{E} \in K$ have weight ψ ad write $\bar{f}=f+n-K=\sum_{i=1}^{t} c_{i} \bar{\xi}\left(f_{i}\right.$, ten since \bar{f} is an h-eigennector of weight ψ and the $\bar{\xi}\left(f_{i}\right)$ are linearly independent, each $\bar{\xi}\left(f_{i}\right)$ with $c_{i} \neq 0$ mort have weight ψ (the paper oort d omits this). Now $g=f-\sum c_{i} \sum\left(f_{i}\right)$ is a weight vector in $n-K$, so $g=\sum_{r \in-\gamma} g_{\gamma}$ where $E-r g_{\gamma}$ has weest ψ, hence g_{r} has weight $\psi+\gamma$ and therefore $g_{\gamma} \in \operatorname{lm} \xi$ by maximalily, hence $\delta \in \operatorname{lm}(\xi) . \quad r \in \Delta_{+}$

Proof of 10.6: since $\left\{w_{\omega x} \mid \omega \in W^{(i+1)}\right\}$ is a basis for $C_{i+1,}\left\{\left\{_{\omega x} \mid \omega \in W^{(c+1)}\right\}\right.$ is a bans for $C_{i+1} / C_{M} C_{i+1}$. Since

This is shawm in two ablemmor:
Lemma 10.6.a. The composition factors of K are of the form $L_{w x}, f_{(w)}>i$.
Proof: using 9.9, let B_{o}^{v} be the resolution of V and recall that $J H\left(B_{j}^{v}\right)=\bigcup_{w<w^{v j}} J H\left(M_{m x}\right)=J H\left(C_{j}^{v}\right)$
Now note that we have exact segences

$$
\begin{aligned}
& 0 \leftarrow V=B_{0}^{v} \leftarrow \ldots \leftarrow B_{i}^{V} \leftarrow \underbrace{\operatorname{Kev}\left(B_{i}^{v} \rightarrow B_{i}^{v}\right)}_{K_{B}:=} \leftarrow 0
\end{aligned}
$$

Thus $J H\left(K_{B}\right) \subset J H\left(B_{i+1}^{v}\right)=\bigcup_{\omega \in W^{c i+1)}} J H\left(M_{\omega x}\right)$ and we are done by the Corollary in 38 :
lemma $10.6 . b$: Let $w_{0} \in W$ and $M \in O$. Assume $f(\omega) \geqslant l\left(\omega_{0}\right)$ for all $l_{w x} \in J H(M)$. let $\tau: M_{w_{0} x}-1 M$ be a homanophhism sst. $\tau\left(f_{w_{0} x}\right) \neq 0$. Then $\bar{\tau}\left(\overline{j_{w_{0}} x}\right)$ in $M / m_{-} M$ is $\neq 0$.

Note that applying this to $M=K, \tau=$ dits and using $10.6 . \mathrm{n}$ for the assumption $f(\omega) \geqslant f\left(\omega_{0}\right)=$ it 1 , we get $\overline{d_{i t 1}}\left(\overline{P_{\omega_{0}} x}\right) \neq 0$. concluding the proof of 10.6 .
Proof of 10.6.b: By induction a card JH(M). let $f \in M$ of weight $\psi-g$ with 4 maximal and NCM the slomodke generated by f, so that N is a quotient of M_{Ψ}.
If $\tau\left(f_{\omega_{0} x}\right) \notin N$ then applying the recut to M / N gives the react by induction hyp potters. So assume $\tau\left(f_{\mu_{0} x}\right) \in N$. Then obviously $L_{w_{0} \chi} \in J H(N) \subset J H\left(M_{\psi}\right)$, so by the Corollary in $\xi 8, \psi=w_{1} \chi$, where $w_{1} \geqslant w_{0}$. Now since $L_{\psi} \in J H(N) \subset J H(M)$, by hypothesis $\ell\left(\omega_{1}\right) \geqslant \ell\left(\omega_{0}\right)$ so we mot have $\omega_{0}=\omega_{1}$. Finally since ψ is maximal in M, $\tau\left(f_{\mu_{0} x}\right) \notin M_{-} M$, and we are done. is

Proof of lemma 10.7: let $f_{1}, \ldots, f_{n} \in K$ be weight rectors mapping to a basis of $K / m K$ and consider the $\mathrm{map}_{:}=\oplus_{i=1}^{n} U\left(n_{-}\right) g_{i} \rightarrow K \quad$ of $U(n-)$-modules. The induced map $C M_{n-C} \rightarrow K / n-K$ is dearly

$$
g_{i} \longmapsto f_{i}
$$

Now complete the free resolution
$0 \leftarrow V \leftarrow C_{0}^{v} \leftarrow \ldots \leftarrow C_{1}^{v} \leftarrow C \stackrel{\eta}{\leftarrow} D \leftarrow \cdots \quad$ ad henceforth denote $\overline{C)}:=1 \underset{u\left(n_{-}\right)}{() \text {, so that rue get }}$ $(x) \rightarrow \bar{D} \xrightarrow{\bar{\eta}} \bar{C} \xrightarrow{\bar{\theta}} \bar{C}_{i}^{v} \rightarrow \bar{C}_{i-1}^{v} \rightarrow \ldots$ By delmition, $\operatorname{Tor}_{i}^{n-}\left(C_{1} v\right)=\frac{\operatorname{Ker} \bar{\theta}}{\ln \bar{\eta}}$.

On the otter had, from $(*), \bar{C} \xrightarrow{\bar{\theta}} \bar{C}_{i} \xrightarrow{\bar{d}_{i}} \overline{\operatorname{Ker}\left(d_{i-1}\right) \rightarrow 0}$ is exact. By lemma $10.6, \bar{d}_{i}$ is an room ad $\bar{\theta}=0$.
We conclude that $\operatorname{Tor}_{i}^{n-}(\mathbb{C}, v)=\bar{C}=k / n K$. But by Bott's tHeorem $\operatorname{dim} \operatorname{Tor}_{i}^{n}(C, V)=\operatorname{card} W^{(i)}=\operatorname{dim}\left(C_{i} M_{u_{-}} C_{i}\right)$, and the lemma 10.7 is proved.

This concludes the proof of Thu 10.1.

