		• • • •	• •	• • •		• •		• • • •	
Lecture 9									
· Discussion on disprovi	ng statemen	ts by cour	terexample						· · ·
- 13 a, b = 2, a	$a^2 > b^2 \Rightarrow a$	arb. Fo	ilse tak	é a=-2,	b = 1 .	Then o	² > b ² b	t a < b	
- v1,, ver" I.i./s							· · 1 ·	· · · · · ·	
30. Find a basis equation	s of the subsp	ace of \mathbb{R}^4 de	efined by	the ·					
Prove that $S = \begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases}$, find a bas	sis farit (You priost Shaw	itas abasis).	· · · ·
Proof S=k	ér(T) where	. ⊤ R'	$\rightarrow \mathbb{R}^2$	has mat	nx (i	1 Z 1 -1	ч) 		
Therefore S								bases of Ke	rrek.
37. Give an dim(ker A)	example of				· · ·	· ·	· · ·	· · · · ·	
		 	· ·	· · ·	· · ·	· ·	· · · ·	· · · · ·	· · · ·
· Mock midterm	solutions	(differen	t file))		· ·			
· More practice que	introns:		• •	· · ·					• • •
- 36. Can you find ker(<i>A</i>)? Expl		natrix A sı	ich that	$\operatorname{im}(A) =$			· · ·	· · · · ·	
- Prove or disprov	e		• •						
$ \int_{T_1} R^* \to R$	is surje	utive and	T. F	^r m→IR ^P	is surje	ective the	$T_2 \circ T_1$	rs sujective	
$\begin{cases} J & T_1 : \mathbb{R}^n \to \mathbb{R} \end{cases}$	ζ ^{μή} is surj	ective and	T_2 R	$R^{m} \rightarrow R^{p}$	is inje	ective they	T20 T2	is injective.	
38. a. Consider a linear \mathbb{R}^3 . What are the Explain.	transformation T possible values of		• •	· · ·					
b. Consider a linear \mathbb{R}^7 . What are the Explain.	transformation T possible values o		· ·						
. 39. We are told that a cert as	ain 5×5 matrix A c A = BC,	can be written							
where <i>B</i> is a 5×4 may you know that <i>A</i> is not		Explain how							

	•		• •		٠	٠	•	•	٠	•	•			•	
	•	٠	• •	• •	•	•	٠	٠		٠		•	٠	٠	•
31. Let V be the subspace of \mathbb{R}^4 defined by the equation	•				•	•	•	•	•	•	•		•	•	
$x_1 - x_2 + 2x_3 + 4x_4 = 0.$			• •												
Find a linear transformation T from \mathbb{R}^3 to \mathbb{R}^4 such	•					•	•	•	•		•			•	
that ker(T) = { $\vec{0}$ } and im(T) = V . Describe T by its matrix A .	•	٠		• •	٠		•	•	٠	٠	0	•	٠	٠	•
	•			••••	•	•	•	•	•	•	•	•	•	•	•
Write down the matrix of your favorite linear transformation	°₩.	•				•		•	0		0		•		
Find bases for the Kernel and image of your answer	to	He	Drevious	 Qu	estion	•	•	•	٠	•	٠		•	•	•
	•			· 7		•	•	•	٠	•	٠	•	•	•	•
58. For which values of the constants <i>b</i> and <i>c</i> is the vector					•	•	•	•	•	•	•	•	•	•	•
$\begin{bmatrix} 3\\b\\c \end{bmatrix} \text{ a linear combination of } \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\6\\4 \end{bmatrix}, \text{ and } \begin{bmatrix} -1\\-3\\-2 \end{bmatrix}?$	•	•						•	٠						
	•		• •												
	•	•	• •					•	٠		٠			•	
list?		•		• •	•	•	•	•	٠	٠	0	•	•	•	•
27. Determine whether the following vectors form a basis of \mathbb{R}^4 :		•	• •	• •	•	•	•	•	•	•	•	•	•	•	•
					•		•	•	•	•	•		•	•	
$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} -2 \\ -2 \\ 4 \end{bmatrix}.$		•			•						•				
$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$, $\begin{vmatrix} 1 \\ -1 \end{vmatrix}$, $\begin{vmatrix} 4 \\ 8 \end{vmatrix}$, $\begin{vmatrix} 4 \\ -8 \end{vmatrix}$.						٠		•	•		•			•	
28. For which value(s) of the constant k do the vectors			• •	• •	٠	•	•	•	•		•	•	•		•
below form a basis of \mathbb{R}^4 ?		•		• •	٠	•	•	•	•	•	•	•		•	•
$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$		•			•	•	•	•	•	•	•	•	•	•	•
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}$		•						•	٠		٠				
$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} k \end{bmatrix}$			• •			٠		•			•				
29. Find a basis of the subspace of \mathbb{R}^3 defined by the				• •			•	•	•	•	•			•	•
equation		•	• •		•	•	•	*	٠	•	٠	•	•	*	٠
$2x_1 + 3x_2 + x_3 = 0.$		•		• •	•	•	•	•	•	•	•	•	•	•	•
	•	•					•		•		•				
		•					•	•	•		•			•	
		•	• •			•		•	•		•	•		•	•
	•	•		• •		•	•	•	•	•	•	•	•	•	•
	•		• •	• •	•	•	•	•	•	•	•	•	•	•	•
	•														
	•	•						•	•		•				
		•	• •				•	•	•	•	•			•	
	•	•	• •			•		•	•		•			•	•
	•	•			•	•	•	•	•	•	•	•	•	•	•
	•	•		• •	•	•	•	•		•	0	•	•	•	•