Lecture 9

- Discussion on disproving statements by counterexample:

- $v_{1}, \ldots, k_{\in} \in \mathbb{R}^{m} l_{\text {i. }} /$ sparing $T_{i n j} /$ sur : See answer bey to HW 2.

30. Find a basis of the subspace of \mathbb{R}^{4} defined by the equation
Prove that $S=\left\{\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{1}\end{array}\right): \begin{gathered}2 x_{1}-x_{2}+2 x_{3}+4 x_{4}=0 \\ x_{1}+x_{2}-x_{3}-x_{4}=0\end{gathered}$ is a shopaca of \mathbb{R}^{4}, find a basis for it (You moot shaw its a basis).
Proof: $S=\operatorname{Ker}(T)$ where $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ has matrix $\left(\begin{array}{cccc}2 & -1 & 2 & 4 \\ 1 & 1 & -1 & -1\end{array}\right)$.
Therefore S is a slospace of \mathbb{R}^{4}. To find a basis, use the method for finding bases of vervets.
31. Give an example of a 4×5 matrix A with $\operatorname{dim}(\operatorname{ker} A)=3$.

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Mock midterm solutions (different file)
- More practice questions
- 36. Can you find a 3×3 matrix A such that $\operatorname{im}(A)=$ $\operatorname{ker}(A)$? Explain.
- Prove or dsporare.

If $T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is sxjective and $T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{P}$ is soriective then $T_{2} \circ T_{1}$ is sujpective If $T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is sriective and $T_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{P}$ is infective then $T_{2} 0 T_{1}$ is infective.
38. a. Consider a linear transformation T from \mathbb{R}^{5} to \mathbb{R}^{3}. What are the possible values of $\operatorname{dim}(\operatorname{ker} T)$? Explain.
b. Consider a linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{7}. What are the possible values of $\operatorname{dim}(\operatorname{im} T)$? Explain.
39. We are told that a certain 5×5 matrix A can be written as

$$
A=B C
$$

where B is a 5×4 matrix and C is 4×5. Explain how you know that A is not invertible.
31. Let V be the subspace of \mathbb{R}^{4} defined by the equation

$$
x_{1}-x_{2}+2 x_{3}+4 x_{4}=0
$$

Find a linear transformation T from \mathbb{R}^{3} to \mathbb{R}^{4} such that $\operatorname{ker}(T)=\{\overrightarrow{0}\}$ and $\operatorname{im}(T)=V$. Describe T by its matrix A.

- Write down the matrix of you favorite linear tranpfrimation

- Find bares for the Verne and inning of you arwuer to the previas question.
- 58. For which values of the constants b and c is the vector
$\left[\begin{array}{l}3 \\ b \\ c\end{array}\right]$ a linear combination of $\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 6 \\ 4\end{array}\right]$, and $\left[\begin{array}{l}-1 \\ -3 \\ -2\end{array}\right]$?
list!

27. Determine whether the following vectors form a basis of \mathbb{R}^{4} :

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2 \\
4 \\
8
\end{array}\right], \quad\left[\begin{array}{r}
1 \\
-2 \\
4 \\
-8
\end{array}\right]
$$

28. For which values) of the constant k do the vectors below form a basis of \mathbb{R}^{4} ?

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
4
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
3 \\
4 \\
k
\end{array}\right]
$$

29. Find a basis of the subspace of \mathbb{R}^{3} defined by the equation

$$
2 x_{1}+3 x_{2}+x_{3}=0 .
$$

