Lecture 7:

In-class exercises from last time: 1. Find the image and kernel of the transformations associated to the following matrices: $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 0 & 2 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ For A, the image is Span $(\binom{1}{2}, \binom{1}{3})$ I daim that this is all of \mathbb{R}^2 We check this by computing the rank of $\begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 3 \end{pmatrix}$ (see facture 4) Indeed $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$ $\stackrel{Gauss}{\longrightarrow}$ $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ \Rightarrow rank $(A) = 2 \Rightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ are a spanning set of \mathbb{R}^2 . Therefore the image of the first transformation is R². Kernd: Ker(T) = freR3 Av=09 $= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : \begin{pmatrix} x+y+z \\ x+2y+3z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ \Rightarrow solving this system gives x = t, y = -2t, t = t $= \begin{pmatrix} t \\ -2t \\ t \end{pmatrix} + t \in \mathbb{R}^{2}$ = Span $\left(\begin{pmatrix} 1 \\ -2 \end{pmatrix} \right)$ For B, the image is Span $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -4 \\ -1 \\ -1 \end{pmatrix}$ Notice that this is redundant $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ So the image is $Spain\left(\begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}, \begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}\right)$ Kernel Ker (T) = fr EIR3 Br=04 La system gies... $= h \begin{pmatrix} 2t \\ -t \\ t \end{pmatrix}$ tell 4 not a coincidence. We explain this today = Span $\left(\begin{pmatrix} 2 \\ -1 \end{pmatrix} \right)$

<u> </u>
2. If $s_1, s_2 \in ker(T)$, then $T(s_1+s_2) = T(s_2) + T(s_2) = 0 \implies s_1+s_2 \in ker(T)$. T limar
If setter (T), $\lambda \in \mathbb{R}$, then $T(\lambda s) = \lambda T(s) = 0 \implies \lambda s \in \text{Ker}(T)$.
3. Im (T) = Span $\binom{3}{4}$ = Columns are multiples of $\binom{3}{4}$
Ker $(T) = Span \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \right) \xrightarrow{(2)} 1 \cdot \text{first column} + 2 \cdot \text{second column} = 0$
So take $\begin{pmatrix} 3 & a \\ 4 & b \end{pmatrix} \xrightarrow{=} \begin{pmatrix} 3 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 2a + 3 = 0 \implies a = -\frac{3}{2}$ (1) $\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} + \begin{pmatrix} a \\ 2 \end{pmatrix} = 2b + 4 = 0 \implies b = -\frac{1}{2}$
So $\begin{pmatrix} 3 & -\frac{3}{2} \\ 4 & -\frac{1}{2} \end{pmatrix}$ may work $lm(T)$ is definitely Span $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
$\operatorname{Ker}(T) = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : \begin{pmatrix} 3 & -\frac{2}{2} \\ y & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$
$= Span\left(\left(\frac{1}{2}\right)^{\prime}\right)$
Percop: • Defined injectivity • Defined Ker, Im, subspaces in general
Today: more on subspaces, dimension, rank-nullity theorem.
Discussion: we have discussed bases for R", but we can generalize this idea to subspaces.
Definition 1: Let S = R" be a linear subspace and let ve.,, vm be vectors in S Then se,, sm form a basis of S iff: • The vectors ve.,, vm are linearly independent
• The span of the vectors va,, vm is all of S.
Example 1: Consider the subspace $S ext{ of } \mathbb{R}^3$, where $S = \left\{ \begin{pmatrix} x \\ 0 \\ 2 \end{pmatrix}, x, z \in \mathbb{R}^5 \right\}$. Then $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ form a basis
of S: they are finearly independent $\lambda(\frac{1}{9}) + \mu(\frac{1}{9}) = 0 \Rightarrow (\frac{1}{9}) = 0 \Rightarrow \lambda = \mu = 0$.
they span $S = \frac{1}{2} \begin{pmatrix} x \\ y \end{pmatrix}$ $x, y \in \mathbb{R}^{n}$
$= 1 \times (0) + \mathbf{z} \cdot (0) \times \mathbf{z} \in \mathbb{R}$
$= \operatorname{Span}\left(\binom{l}{2}, \binom{o}{4}\right).$

The vectors $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ also span. S, but they are not fin
The vector $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is linearly independent (by itself), but it does not span S
Remark: the theorem about maximality (minimality also holds for subspaces, and the proof is the
same as the one we did for R" We record it for completeness
Theorem 1: A set of vectors va,, vm is a "minimal spanning set for S if and only if
va,, vm is a "maximal" linearly independent set in S if and only if
VI,, Vm 15 a basis for S.
Question: do all bases have the same number of vectors?
Theorem 3: Let $S \subseteq \mathbb{R}^n$ be a linear subspace. Let $v_{a,,}v_m$ be a basis for S, and let $w_{a,,w_n}$ be
another basis. Then m=k In other words any two bases of S have the same number of vectors.
Proof Consider {v2, v2,, vm-19. These do not span vm (otherwise v2,, vm would be linearly dependent).
So there is some wi not spanned by 1/2,, vm-1 (otherwise v2,, vm-1 would span w2,, wk, which in turn
span S, but we showed they do not span vm). Assume the wi is actually wn (we may reorder the wi's so that
this is true).
Next, consider $\{v_1, \dots, v_{m-1}, w_k\}$. Write $w_{k-1} = \lambda_1 v_1 + \dots + \lambda_{m-1} v_{m-1} + \mu_k w_k$
Then, one of the his is nonzero (otherwise were would be in Span(we), impossible). Assume it is have
Then, we can replace vm-1 by wx-1. Repeat this process with replacing the vis by wis. Since one
vector is replaced each time, it follows that K ≤ m. Repeating this argument replacing wi's by vi's shows m ≤ K a
We can now define:
Definition 2: The dimension of a subspace $S \subseteq \mathbb{R}^n$ is the number of vectors of (any) basis of S. We write it dim(S).
Example 2: Let $S \subseteq \mathbb{R}^3$ be $\binom{5}{2}$: $x_i \ge \mathbb{R}^3$. This has a basis $\binom{1}{0}$, $\binom{9}{1}$, hence $\dim(S) = 2$.
S also has a basis $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. To see this, note that $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, are linearly independent,
· · · · · · · · · · · · · · · · · · ·

Remark the time	en l	the share the F	s human are	Thin 2	it is a bus	ńs.			•
toop to find b	ases for lun and	Ker	OLONARIA AND	dim 4	clim 2	· · · ·	· ·	· ·	•
Example 3:	$A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \\ 4 & 8 \\ 3 & 6 \end{bmatrix}$	$\begin{array}{rrrr} 2 & -5 \\ -1 & 1 \\ 5 & -8 \\ 1 & 5 \end{array}$		-> T : R ⁵ -	R ⁴	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•
· · · · ·	$B = \operatorname{rref}(A) = \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -4\\5\\0\\0\end{bmatrix}$	· · · ·	· · · ·	· · · ·	· · ·	· ·	
≌ Recold that Now the	Ker(T) = {sold = {sold solutions are {	tions to (A) tions to (rw) $\begin{pmatrix} -2t - 3s + 4r \\ 4s - 5r \\ s \\ r \end{pmatrix}$	$\left \begin{array}{c} 0 \\ 0 \end{array} \right \left\{ \\ \left \left(A \right) \right \begin{array}{c} 0 \\ 0 \end{array} \right \left\{ \\ 0 \end{array} \right) \left\{ \\ t, s, r \in \mathbb{R} \right\} = \frac{1}{1}$	Span $\begin{pmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•
Upshot Recall that combinations	dim $(\text{Ker}(T)) =$ m(T) is the of others key	# non-pixot co spain of the observation:	lumus in sref(s columns J columns a:	A)=3 A, but t form a l	(= "nullity" hat some ineur depen) Clumns	may be and only	linear L the	· · · ·
corresponding It is now	columns of B easy to see	do. B=	$\operatorname{rref}(A) = \begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix}$		$ \begin{bmatrix} 3 & -4 \\ 4 & 5 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} $	· · · · · · · · · · · · · · · · · · ·			•
H follows H	at a basis for	lm(T) is	tte first	are linear and third	vectors in	s of A	$\begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}$ and		• • •
$\begin{pmatrix} 1 \\ -1 \\ 4 \\ -3 \end{pmatrix} = \mathbf{a}$	w $\begin{pmatrix} 2 \\ -1 \\ s \\ \end{pmatrix}$ form	a basis for	(m(T)					· ·	•

Exam					ן יייר אי	lk		, ⊤	dilla	()	۳ (T)	· ·	° K	•	be	at	intar	Tro	Nipir	NCI 1 (6	SVA .			•		•
Cxaw	la li	•	10	2	-1)	cre ())	2		()		•		1	•	•	•		•	•	•		•
	pre 9		Т Ст	-) -)	J)		sr	erner	•	Sp		(- 2))		a(m	Т.	•		•	1	idd c	pt	6 3	= dit	n ('[[
	• •	•	•	•	•	•		d	nape	•	Spi	N (),(() -	→ c	lim	2	•	}	•	•	• •		•
		•	•	•		•			•	•	•	•	•	· · ·		· ·	•	•	•	•	•	•	•	• •		•
n - c	055 EV	erci se	5 :						٠																	
м 5° . , .	~ ·	(.	•	•	. 0	 Л	Ŀ	0	V.	•	А	. L	•		0	2	-)[\		•	•	•	•			•
.1 :	Comp	vtz.	te	imag	ب	9	tle.	Trai	is6(mc	lior	່ພ	th	mat	'nΧ		.1 1	-1. 1	1 0)	,by		indin	y a	basis	OK T	t.
			•	•					•									• /	•			•				•
2.	Com	pute	He	Ver	nels	. a	ind im	agio	g	'te	1	raw) D(MCL	kion	Si	n Le	ture	5,	a	nd u	renju	j th	e r	ank	nul	ity
	theore	י אי העצ	n e	zch	Cay	5.		.		•																
· · ·	بندی ج	· ·	1	•	. p	•	 . ц.	•	•	•) (×		•	•	•	• •	- 3 .	•	•	•	•	•	•	• •		•
ຸ ງ ,	tin	d a	Þa	C)C	1	ſ	The	S.	bspar	ie.	1()	() : -)	×+4	+8=	9 Y	Ē	۲۳ .						•			
		•	•	•	•	•		•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•		• •	•
		٠		•	•					٠		•	*	•	•		•			•	٠		•	•		•
							• •	•	٠	•	•	•	•	•	•	• •	•		•		•	•				•
• •	• •	•	•		•						•															
 	· ·		•	•	•	•		•	•		•	٠	•		•	• •		•	•	•			•	•		
· ·	· ·	•	•	•	•	•	•••	•	•		•	•	•	•	•	• •	•	•	•	•	•	•	•	• •		•
· · ·	· · ·	•	•	•	•	•	· ·		•	•	•	•	•	•	•	· ·	•	•	•	•	•	•	•	• •	· ·	•
· · · · · · · · · · · · · · · · · · ·	· · ·	•	•	•	•	•	· · ·		•	•	•	•	•	•	•	· · ·	•	•	•	•	•	•	•	· ·	· · ·	•
· · · · · · · · ·	· · ·	· · · ·	•	•	•	•	· · ·	•	· · ·	•	•	•	•	•	•	· · ·	•	•	•	•		•	•	• •	· · ·	•
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	•	•	•	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•	•	· · ·	•	•	•	· · ·	•	•	•	· · ·	•	•	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•