Lecture 7 :
In-class exercises from last time:

1. Find the image and Kernel of the tranopromations associated to the fobbing matrices:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right), B=\left(\begin{array}{ccc}
0 & 2 & -1 \\
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

For A, the image is $\operatorname{Span}\left(\binom{1}{1},\binom{1}{2},\binom{1}{3}\right)$. I dam that this is all of \mathbb{R}^{2} We check this by computing the rank of $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right)$ (se lecture 4)
Indeed $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right) \stackrel{\text { Grus }}{ }\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right) \Rightarrow \operatorname{rank}(A)=2 \Rightarrow\binom{1}{1},\binom{1}{2},\binom{1}{3}$ are a spanning xt of \mathbb{R}^{2}. Therefore the image of the first transformation is \mathbb{R}^{2}.
Kernel: $\operatorname{Ker}(T)=\left\{v \in \mathbb{R}^{3}: A v=O\right\}$

$$
=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right):\binom{x+y+z}{x+2 y+3 z}=\binom{0}{0}\right\}
$$

\longrightarrow solving this system gives $x=t, y=-2 t, r=t$

$$
\begin{aligned}
& =\left\{\left(\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right): t \in \mathbb{R}\right\} \\
& =\operatorname{San}\left(\left(\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right)\right)
\end{aligned}
$$

For B, the image is $\operatorname{Span}\left(\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right)$
Notice that this is reclundant": $\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=-2 \cdot\binom{-1}{0}+\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
So the image is $\operatorname{Span}\left(\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right)$
Kernel $\operatorname{Ker}(T)=\left\{v \in \mathbb{R}^{3}: B v=0\right\}$

$$
=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right):\left(\begin{array}{lll}
0 & 2 & -1 \\
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}
$$

\longrightarrow system gives...

$$
\left.=\left\{\begin{array}{c}
2 \mathrm{c} \\
-\mathrm{t} \\
\mathrm{t}
\end{array}\right): t \in \mathbb{R}\right\}
$$

$=\operatorname{Span}\left(\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)\right)$ not a coinciriencel We explain this today.
2. If $s_{1}, s_{2} \in \operatorname{Ker}(T)$, then $T\left(s_{1}+s_{2}\right)=T\left(s_{1}\right)+T\left(s_{2}\right)=0 \Rightarrow s_{7}+s_{2} \in \operatorname{Ker}(T)$. T finer

If $s \in \operatorname{Ker}(T), \lambda \in \mathbb{R}$, then $T\left(\lambda_{s}\right)=\lambda T(s)=0 \Rightarrow \lambda s \in \operatorname{Ker}(T)$. T linear
3. $\operatorname{lm}(T)=\operatorname{Span}\left(\binom{3}{4}\right) \stackrel{(1)}{\Rightarrow}$ Columns are multiples of $\binom{3}{4}$
$\operatorname{Ker}(T)=\operatorname{Span}\left(\binom{1}{2}\right) \stackrel{(2)}{\Rightarrow} 1 \cdot$ first column $+2 \cdot$ second column $=0$.
So take $\left(\begin{array}{ll}3 & a \\ 4 & b\end{array}\right) \underset{\text { (2) }}{\Rightarrow}\binom{3}{4}+2\binom{a}{b}=\binom{0}{0} \Rightarrow \begin{aligned} & 2 a+3=0 \Rightarrow a=-\frac{3}{2} \\ & 2 b+4=0 \Rightarrow b=-\frac{1}{2}\end{aligned}$
So $\left(\begin{array}{ll}3 & -\frac{3}{2} \\ 4 & -\frac{1}{2}\end{array}\right)$ may work: $\ln (T)$ is definitely $\operatorname{Span}\left(\binom{3}{4}\right)$

$$
\begin{aligned}
\operatorname{Ver}(T) & =\left\{\binom{x}{y}:\left(\begin{array}{ll}
3 & -\frac{3}{2} \\
4 & -\frac{1}{2}
\end{array}\right)\binom{x}{y}=\binom{0}{0}\right\} \\
& =\text { Span }\left(\binom{1}{2}^{1}\right.
\end{aligned}
$$

Decaf: Defined injectivity, surjectivity

- Defined Ker, lm, subspaces in general

Today: more on subspaces, dimension, rank-nulity theorem.
Discussion: we have discussed bases for \mathbb{R}^{n}, but we can generalize this idea to subspaces.
Definition 1: Let $S \subseteq \mathbb{R}^{n}$ be a linear subspace and let v_{2}, \ldots, v_{m} be vectors in S Then s_{1}, \ldots, s_{m} form a basis of s ill:

- The vectors v_{2}, \ldots, v_{m} are linearly independent
- The span of the vectors v_{1}, \ldots, v_{m} is all of S.

Example 1: Consider the subspace S of \mathbb{R}^{3}, where $S=\left\{\left(\begin{array}{l}x \\ 0 \\ z\end{array}\right) x, z \in \mathbb{R}\right\}$. Then ($\left.\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ form a basis of S : they are linearly independent: $\lambda\binom{1}{0}+\mu\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=0 \Rightarrow\binom{\lambda}{i}=0 \Rightarrow \lambda=\mu=0$.
they span $S: S=\left\{\left(\begin{array}{l}x \\ z \\ z\end{array}\right): x, z \in \mathbb{R}\right\}$

$$
\begin{aligned}
& =\left\{x \cdot\binom{1}{0}+z \cdot\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right): x, z \in \mathbb{R}\right\} \\
& =\operatorname{Span}\left(\left(\begin{array}{l}
\left.\binom{0}{0},\binom{0}{0}\right)
\end{array}\right.\right.
\end{aligned}
$$

The vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$ also spar. S, bat they are not l i.
The vector $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is linearly independent (by itelf), but it does not span S
Remark: the theorem abat maximality/minimality also holds for subspaces, and the proof is the same as the one we did for \mathbb{R}^{n}. We record it for completeness.
Theorem 1: A set of vectors $v_{A}, . ., v_{m}$ is a "minimal spamming set for S if and only if v_{A}, \ldots, v_{m} is a "maximal linearly independent set in S if and only if
v_{1}, \ldots, v_{m} is a basis for S.
Question: do all bases have the same number of vectors?
Theorem 3: let $S \subseteq \mathbb{R}^{n}$ be a linear subspace let v_{1}, \ldots, v_{m} be a basis for S, and let w_{1}, \ldots, w_{k} be another basis. Then $m=k$. In other words any two bases of S have the same number of vectors.

Proof: Consider $\left\{v_{1}, v_{2}, \ldots, v_{m-1}\right\}$. These do not span v_{m} (otherwise v_{1}, \ldots, v_{m} wowed be linearly dependent) So there is some w_{i} not spanned by $\left\{v_{2}, \ldots, v_{m-1}\right\}$ (otherwise v_{1}, \ldots, v_{m-1} wald span w_{1}, \ldots, w_{k}, which in turn span S, but we showed they do not span v_{m}). Assume the w_{i} is actually w_{n} (we may reorder the w_{i} 's so that this is true).

Next, consider $\left\{v_{1}, \ldots, v_{m-1}, w_{k}\right\}$. Wite $w_{k-1}=\lambda_{1} v_{1}+\ldots+\lambda_{m-1} v_{m-1}+\mu_{k} \omega_{k}$
Then, ore of the λ_{i} 's is nonzero (otherwix w_{k-1} wald be in $S_{\text {san }}\left(w_{k}\right)$, impossible). Assume it is λ_{m-1}. Then, we can replace v_{m-1} by ω_{k-1}. Repeat this precess untie replacing the v_{i} 's by w_{i} 's. Since one vector is replaced each time, it follows that $k \leqslant m$. Repeating this argument replacing wis by vic shows $m \leqslant k: 0$ We can now define:

Definition 2: The dimension of a subspace. $S \subseteq \mathbb{R}^{n}$ is the number of vectors of (any) basis of S. We write it $\operatorname{dim}(S)$.
Example 2: Let $S \subseteq \mathbb{R}^{3}$ be $\left\{\left(\begin{array}{l}x \\ 0 \\ z\end{array}\right): x_{12} \in \mathbb{R}\right\}$. This has a basis $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, hence $\operatorname{dim}(S)=2$. S also has a bass $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. To see this, note that $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are linearly independent,
so their span is 2 -dimensional, and lies inside $S \Rightarrow$ it is a maximally linearly ines set in S

$$
\overrightarrow{T_{\min 2}} \text { it is a basis }
$$

Remark: the dimension formalizes the idea that obspaces are "a live", "a plate", etc.
How to find bases for lm and Ker
Example 3 :

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrr}
1 & 2 & 2 & -5 & 6 \\
-1 & -2 & -1 & 1 & -1 \\
4 & 8 & 5 & -8 & 9 \\
3 & 6 & 1 & 5 & -7
\end{array}\right] . \quad \leftrightarrow \mathbb{R}^{5} \rightarrow \mathbb{R}^{4} \\
& B=\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & -4 \\
0 & 0 & 1 & -4 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Kerr Recall that $\operatorname{Ker}(T)=\left\{\right.$ soltions to $\left.\left(A \left\lvert\, \begin{array}{l}0 \\ \vdots \\ j\end{array}\right.\right)\right\}$

$$
=\left\{\text { solutions to }\left(\operatorname{ref}(A) \left\lvert\, \begin{array}{|c}
0 \\
\vdots \\
0
\end{array}\right.\right\}\right.
$$

 to a basis vedor

Upshot: $\operatorname{dim}(\operatorname{Ker}(T))=\#$ non-piust columns in $\operatorname{rref}(A)=3 . \quad(=$ "nullity")
In Recall that $\operatorname{Im}(T)$ is the span of the columns of A, bat that some columns may be linear combinations of others. Key observation: columns a : form a linear dependence of and only if the corresponding column of B do. It is now easy to see that

$$
B=\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & -4 \\
0 & 0 & 1 & -4 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

are linear combinations of $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$.
It follows that a basis for $\operatorname{lm}(T)$ is the first and third vectors in A
$\left(\begin{array}{c}1 \\ -1 \\ y \\ 3\end{array}\right)$ and $\left(\begin{array}{c}2 \\ -1 \\ 5 \\ 1\end{array}\right)$ form a basis for $\operatorname{lm}(T)$
Upshot: $\operatorname{dim}(\operatorname{lm}(T))=\#$ pivot columns in $\operatorname{rref}(A)=\operatorname{rank}(A)$

Since \#piot colomns + \# non-puot columns = \#columns of $A=\operatorname{dim}$ (domain), we have arrived at the following theorem
Theorem 4 (Rank -nelity Theorem) Let $T \cdot \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a finear tranpormation. Then

$$
\operatorname{dim}(\operatorname{Ker}(T))+\operatorname{dim}(\operatorname{lm}(T))=n .
$$

Example 4: $\left(\begin{array}{ccc}0 & 2 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 0\end{array}\right)$ has Vernel $\operatorname{Span}\left(\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)\right) \rightarrow \operatorname{dim} 1$

$$
\text { image } \operatorname{Span}\left(\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right) \rightarrow \operatorname{dim} 2
$$

In-class exercies:

1. Compte the image of the tranporution with matrix $\left(\begin{array}{ccc}0 & 2 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 0\end{array}\right)$, by findiry a boss fort
2. Compte the kennels and inages of the tranfomations in Leature 5, and venfy the rank-nullity theorem in each car.
3. Find a basis for the subpace $\left\{\begin{array}{l}x \\ y \\ t\end{array}\right)$ xy+y=0$\} \subseteq \subseteq \mathbb{R}^{3}$.
