Lecture 5
Recap: - Charactenzed linter indeporicence, spanning, bars in terms of rank:

$v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$ are a spanning set $\Leftrightarrow \operatorname{rank}\left(\begin{array}{ll}1 & v_{1} \\ y_{1} & r_{p} \\ 1\end{array}\right)=$ "dimescian" of the space $(=m)$
$v_{1}, \ldots, v_{0} \in \mathbb{R}^{m}$ are a bass $\Leftrightarrow m=n=\operatorname{rank}\left(\begin{array}{ll}1 & 1 \\ y_{1} & \ldots \\ 1 & 1\end{array}\right)$.
$\left(\operatorname{dim} \mathbb{R}^{m}=m\right)$

- Defined linear tranpimations.
 transformation
- Equivalently, a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $T\left(\binom{x_{2}}{x_{n}}\right)=x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}$
for some fixed vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$
- Equivalently, a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $T(v+w)=T(v)+T(\omega) \quad \forall v, w \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$
$T(\lambda v)=\lambda \pi v)$

Today: More on linear transformations aud matrix products

Examples of linear transformations $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ (good to keep in mind).
Example 1: Scaling
Consider the linear transformation $\binom{x_{1}}{x_{2}} \mapsto\binom{2 x_{1}}{3 x_{2}}=\binom{2 x_{1}+0 x_{2}}{0 x_{2}+3 x_{2}}$ Hs associated matixix is $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$
This matrix scales the x-coordinates by 2 and the y-coordinates by 3

Example 2: Rotation:
Consider $T\binom{x_{1}}{x_{2}}=\binom{-x_{2}}{x_{1}}=\binom{0 x_{1}-x_{2}}{x_{1}+0 x_{2}} \quad$ Its matrix i is $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
This matrix is a conterclockuix 90° rotation:

Example 3: Shear:

$$
T\binom{x_{1}}{x_{2}}=\binom{x_{1}+x_{2}}{x_{2}} \leadsto\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Example 4: Reflection

$$
T\binom{x_{1}}{x_{2}}=\binom{-x_{1}}{x_{2}} \leadsto\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Example 5 Projection

$$
T\left(\binom{x_{2}}{x_{2}}\right)=\binom{x_{1}}{0}
$$

(i) \uparrow

Observe: this is the only one that were seen that "loses information".
Example 6: $T\binom{x_{2}}{x_{2}}=\binom{0}{0}$ This loses all of the information.

Composing linear transformations
Suppose $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are given by:

$$
\begin{aligned}
A=\left(\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right) & B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
\text { (rotation) } & \text { (shear) }
\end{aligned}
$$

and I want to compose them one after the other
Crucial observation: $T_{2} \circ T_{1}$ is linear. Proof: $T_{2} \circ T_{1}(v+\omega)=T_{1}\left(T_{1}(v)+T_{2}(\omega)\right)=T_{2} \circ T_{1}(v)+T_{2} \circ T_{2}(\omega)$

$$
T_{2} \circ T_{1}(\lambda v)=T_{2}\left(\lambda T_{1}(v)\right)=\lambda T_{2} \circ T_{1}(v)
$$

Then, what is the matrix of $T_{2} \circ T_{1}$?
Idea only have to look at where $\binom{1}{0}$ and $\binom{0}{1}$ go.
Now $T_{1}\left(\binom{1}{0}\right)=\binom{0}{1} \quad$ (first column of $\left.A\right)$
and $T_{2}\left(\binom{0}{4}\right)=\binom{1}{1}$
Similarly, $T_{1}\left(\binom{0}{1}\right)=\binom{-1}{0}$

$$
T_{2}\left(\binom{-1}{0}\right)=-T_{2}\left(\binom{1}{0}\right)=-\binom{1}{0}=\binom{-1}{0} .
$$

Geometrically:

In general, if $T_{1}: \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}^{n_{2}}$ and $T_{2}: \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}^{n_{3}}$ are liner tranporamations with matrices A and B, then the matrix for the linear trampormation $T_{2} \circ T_{1}: \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}^{n_{s}}$ is

We have arrived at a convincing definition for the product of two matrices:
Definition 1: let $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n_{1}} \\ a_{21} & & \vdots \\ a_{n_{1} 1} & \cdots & \cdots & \vdots \\ n_{n 2} n_{1}\end{array}\right) \quad \leftrightarrow T_{1} \quad \mathbb{R}^{n_{1}} \rightarrow \mathbb{R}^{n_{2}}$

$$
B=\left(\begin{array}{ccc}
b_{12} & b_{12} & \cdots
\end{array} b_{1 n_{2}}\right) \quad \leftrightarrow I_{2}: \mathbb{R}^{n_{2}} \longrightarrow \mathbb{R}^{n_{3}}
$$

Then their product is cd/pect as

$$
B A=\left(B \cdot\left(\begin{array}{c}
a_{12} \\
\vdots \\
a_{n 2}
\end{array}\right) B\left(\begin{array}{c}
a_{12} \\
\vdots \\
a_{n 22}
\end{array}\right) \cdots B\left(\begin{array}{c}
a_{2 n_{2}} \\
\vdots \\
a_{n_{2}}
\end{array}\right)\right)
$$

Example 6 :

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & -1 & 0
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 0 & -1 & 0 \\
0 & -1 & 1 & 1
\end{array}\right) & =\left(\begin{array}{ccccc}
1 \cdot 1+2 \cdot(-1)-3 \cdot 0 & 1 \cdot 1-3 \cdot(-1) & 1 \cdot 1+2 \cdot(-1)-3 \cdot 1 & 1 \cdot 0+2 \cdot 0-3 \cdot 1 \\
2 \cdot 1-1 \cdot(-1)+00 & 2 \cdot 1-1 \cdot 0+0 \cdot(-1) & 2 \cdot 1-1 \cdot(-1)+0 \cdot 1 & 2 \cdot 0-1 \cdot 0+0 \cdot 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
-1 & 4 & -4 & -3 \\
3 & 2 & 3 & 0
\end{array}\right)
\end{aligned}
$$

Remark: matrix multiplication is not commutative:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \\
& \left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Invertibitity
Definition 2: A linear transformation T has an inverse of there exists another linear tranpormation T^{-1}, such that $T \cdot T^{-1}=$ identy map and $T^{-1} 0 T=$ identity map.

Sometimes, linear trampormations can be inverted. For instance, the inverse of a comberclockuise 90° rotation is a dockwise 90° rotation. Similarly, scaling can be inverted. However, projections cannot, as the folbwing example illustrates.
Example 7: let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

Then, if T is ineritibe, we wald have a linear tranpormation T^{\prime} such that:

The problem is: $T\binom{0}{1}=\binom{0}{0}$, so $T^{\prime} \circ T\binom{0}{4}=T^{\prime}\left(T\binom{0}{1}\right)=T^{\prime}\binom{0}{0}=\binom{0}{0} \neq\binom{ 0}{1}$. So such a T^{\prime} cannot exist!

In general, if T "kills" some vector, then T cannot have an inverse
Another problem: the image of each element of \mathbb{R}^{2} under T is a multiple of $\binom{1}{0}$, so in particular we cannot have $T_{0} T^{\prime}\binom{0}{1}=\binom{0}{1}$, since $T_{0} T^{\prime}\binom{0}{1}=\underbrace{T\left(T^{\prime}\binom{0}{1}\right)}_{\text {image of an element vader } T}$
We will cone back to these ideas later In order to play around with immerses, it will be useful to learn how to compute them

Fact: Only square matrices have inverses (we well prove this soon)
How to find the inverse of a matrix (fit exits)
Suppose we want to find the inverse of A, the matrix of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Then we seek another square matrix A^{\prime} such that $A A^{\prime}=1 d$

Similerly, n linear systems will give all of A', column by column. If no inverse exists, one of the systems will be incompatible.
Example 8: Let us find the inverse of $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$
$\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right) \cdot \underbrace{A^{\prime} \cdot\binom{1}{0}}_{\text {unknown }}=\left(\frac{1}{0}\right) \quad$ Get a system:

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
0 & -1 & 1 \\
1 & 2 & 0
\end{array}\right) \xrightarrow{\operatorname{Ir} \rightarrow \mathbb{I}}\left(\begin{array}{cc|c}
1 & 2 & 0 \\
0 & -1 & 1
\end{array}\right) \xrightarrow{\mathbb{I} \rightarrow-\mathbb{I}}\left(\begin{array}{cc|c}
1 & 2 & 0 \\
0 & 1 & -1
\end{array}\right) \xrightarrow{I \rightarrow I-2 \cdot \mathbb{I}}\left(\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right) \quad \Rightarrow\binom{2}{-1} \text { is the itcolen } \\
& \left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \cdot A^{\prime}\binom{0}{1}=\binom{0}{1} \\
& \left(\begin{array}{cc|c}
0 & -1 & 0 \\
1 & 2 & 1
\end{array}\right) \xrightarrow{I \rightarrow I}\left(\begin{array}{cc|c}
1 & 2 & 1 \\
0 & -1 & 0
\end{array}\right) \xrightarrow{\mathbb{I}-\mathbb{I}}\left(\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{I \rightarrow I-2 \mathbb{I}}\left(\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \Rightarrow\binom{1}{0} \text { is the end column }
\end{aligned}
$$

$\Rightarrow A^{-1}=\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right) \quad$ let's check this: $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right) \cdot\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \mathrm{J}$

$$
\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \vee
$$

Remark Notice that solving the 2 systems required the same steps. We can pot these steps together as follows:

$$
\left(\begin{array}{c|cc}
A & 1 & 0 \\
0 & 1
\end{array}\right) \stackrel{\substack{\text { Gaussian } \\
\text { dim }}}{\sim}\left(\operatorname{rref}(A) \mid A^{\prime}\right)
$$

If $\operatorname{ref}(A)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$, then the inverse of A is A^{\prime}. Otherwise, A has no inverse.
Observation: once you have computed A^{-1}, you never have to do Gaussian glim to solve $A x=b$ ever again! Simply, $A x=b \Rightarrow A^{-1} A x=A^{-1} b \Rightarrow x=A^{-1} b$.

1. What is the matrix of the transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which reflect along the line $y=x$? What about the projection onto that same line? (Hint where do the basis raters go?) Are both of them invertise? Find the inverses of they exist.
2. "Draw" the linear tranpromations for $A=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array} 1\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ and $A B$ as in the Pecture Check that $A B$ sends the bass vectors to the same incuses as composing the other two.
3. Find the inverse of the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
