lecture 4
Recap: Vectors, addition, scalar multiplication

- Span, spanning set
- Linear independence.

Today: Mare on span and linear dependence + Intro to linear transformations (Pre-cless quiz)

Discussion: In the exercise session, we have seen that checking linear independence/spanning aments to solving systems of linear equations. Let us make this precise.
Remark: I will of ten write O for $\left(\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right)$ when there's no ambiguity.

Linear independence revisited
Suppose we have vectors $v_{1}=\left(\begin{array}{l}a_{11} \\ a_{21} \\ a_{m 1}\end{array}\right), \ldots, v_{n}=\left(\begin{array}{l}a_{2 n} \\ a_{2 n} \\ a_{m n}\end{array}\right)$ in \mathbb{R}^{m}, and we want to know if they are linearly independent.

The question is: can I find $x_{1}, x_{2}, \ldots, x_{m}$ such that $x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{m} v_{m}=0$? If the only possibility is of $x_{1}=x_{2}=\ldots=x_{m}=0$, then v_{1}, \ldots, v_{m} will be linearly independent. Let's expand this out We've looking for x_{1}, \ldots, x_{m} such that:

$$
\begin{align*}
0=x_{1} v_{1}+\ldots+x_{m} v_{m} & =x_{1}\left(\begin{array}{c}
a_{21} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\ldots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right) \\
& =\left(\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right) \tag{*}
\end{align*}
$$

In other words, we need to solve the system with ayymented matrix

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & 0 \\
\vdots & \ddots & \vdots & 0 \\
\vdots \\
a_{m 1} & \cdots & a_{m n} & 0
\end{array}\right)
$$

Observe that the system is consistent: $x_{1}=x_{2}=\ldots=x_{m}=0$ is a solution
The question is: are there infinitely many?
\Leftrightarrow
are there free variables in $\operatorname{rref}(A)$?
\Leftrightarrow
Is there a pivot per column?
\leftrightarrow

$$
\text { Is } \operatorname{rank}(A)=n\left(\begin{array}{l}
\# \text { vectors } \\
\\
=\# \text { columns }
\end{array}\right) ?
$$

In short, we have the following:

Spanning set revisited

$$
\left(\begin{array}{cccc}
a_{12} & a_{12} & \cdots & a_{1 n} \\
a_{22} & a_{22} & & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{m 1} & \ddots & a_{m n}
\end{array}\right)
$$

A similar story holds for the spanning property.
The question is for any $w=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right)$, can I find $x_{1}, x_{2}, \ldots, x_{m}$ such that $x_{1} v_{1}+x_{2} v_{2}+\ldots+x_{m} v_{m}=w$?
Let's write it ort again. This time we get

$$
\left(\begin{array}{c}
a_{21} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{2}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

The question becomes: is the system

$$
\Leftrightarrow
$$

 compatible for all choices of b_{i} ?

Does $\operatorname{rief}(M)$ have no rows live $\left(0 \ldots o \mid b_{i}^{\prime}\right)$?
\Leftrightarrow
Does ref (A) have a pivot in each row?
\Leftrightarrow
Is $\operatorname{rank}(A)=m(E$ \#varibles $) ?$
We now have:
Theorem 2 : the vectors $v_{1}=\left(\begin{array}{l}a_{11} \\ a_{21} \\ a_{m 1}\end{array}\right), \ldots, v_{n}=\left(\begin{array}{l}a_{2 n} \\ a_{2 n} \\ a_{m n}\end{array}\right)$ in \mathbb{R}^{m} are a spanning set $\Leftrightarrow \operatorname{rank}(A)=m$.

$$
\left(\begin{array}{cccc}
a_{12} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{m 1} & & \ddots & a_{m n}
\end{array}\right)
$$

Linear transformations
Inspired by the linear combinations story, we define a linear transformation as follows: Definition 1: A linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of the form $\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{m}\end{array}\right) \mapsto\left(\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\ a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\ \vdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}\end{array}\right)$
(for some fixed values $a_{i j}$)
The matrix of the transformation is $\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right)$
Forming the vector $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{m}\end{array}\right)$, we define matrix-vector multiplication as

$$
A x=\left(\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right)
$$

Remark: Matrix-vector multiplication is often introduced withat motivation. One important way to think about it is the linear combination interpretation: a matrix $A=\left(\begin{array}{ccc}1 & 1 \\ v_{1} & \ldots & v_{n} \\ 1 & & 1\end{array}\right)$ sends $\left(\begin{array}{c}\lambda_{1} \\ \vdots \\ \lambda_{n}\end{array}\right)$ to the linear combination $\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}$.

Example 1: $\left(\begin{array}{ll}1 & -1 \\ 2 & -3\end{array}\right)\binom{4}{1}=\binom{14-1 \cdot 1}{2 \cdot 4-3 \cdot 1}=\binom{3}{5}=4 \cdot\binom{1}{2}+1 \cdot\binom{-1}{-3}$
Example 2: $\quad\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & -1 & 2\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\binom{-2}{6}$
Example 3: (Important observation) $\left(\begin{array}{ll}1 & -1 \\ 2 & -3\end{array}\right)\binom{1}{0}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\binom{1}{2}$

$$
\left(\begin{array}{ll}
1 & -1 \\
2 & -3
\end{array}\right)\binom{0}{1}=\binom{1 \cdot 1}{2 \cdot 1}=\binom{-1}{-3}
$$

In words the image of c is the first colon, the image of \hat{j} is the second colin
Important property of linear transformations:
Theorem 3: let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $v, w \in \mathbb{R}^{n}$. Then,

1) $T(v+w)=T(v)+T(w)$
2) $T(\lambda v)=\lambda T(v)$ for all scalars $\lambda \in \mathbb{R}$

Proof :1) let $A=\left(\begin{array}{ccc}1 & 1 \\ a_{1} & \cdots & a_{n} \\ 1 & 1\end{array}\right)$ be the matrix associated to the linear tranpsimation. and wite $v=\left(\begin{array}{c}v_{2} \\ \vdots \\ v_{n}\end{array}\right), w=\left(\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right)$

$$
\text { Then } \begin{aligned}
T(v+w) & =T\left(\begin{array}{c}
u_{1}+w_{1} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right) \\
& =\left(v_{1}+w_{1}\right) a_{1}+\left(v_{2}+w_{2}\right) a_{2}+\cdots+\left(v_{n}+w_{n}\right) a_{n} \\
& =\left(v_{1} a_{1}+\ldots+v_{n} a_{n}\right)+\left(w_{1} a_{1}+\ldots+w_{n} a_{n}\right) \\
& =T(v)+T(w)
\end{aligned}
$$

2) Exercise

One may wonder of the conditions in Theorem 3 imply that T is linear The following theorem says that the awwer is yes

Theorem 4 Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function satisfying: $T(v+w)=T(v)+T(w)$ and $T(\lambda v)=\lambda T(v)$ for all $v, w \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$. Then T is a linear transformation, with a associated matrix $\left(\begin{array}{cc}1 & 1 \\ T\left(e_{2}\right) & \cdots\left(e_{m}\right) \\ 1 & 1\end{array}\right)$.
Proof: Take the canonical basis $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right), \ldots, e_{n}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, and let $a_{1}=\left(\begin{array}{l}a_{12} \\ a_{21} \\ a_{m 2}\end{array}\right), \ldots, a_{n}=\left(\begin{array}{l}a_{n 2} \\ a_{21} \\ a_{m n}\end{array}\right)$ be $T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)$ respectively Then, for a given $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$,

$$
\left.T\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=T\left(x_{4} e_{1}+\ldots+x_{n} e_{n}\right) \underset{\text { Assumption }}{1}\right)_{1} T\left(e_{1}\right)+\ldots+x_{n} T\left(e_{n}\right)=\left(\begin{array}{c}
a_{12} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m} x_{2}+\ldots+a_{m n} x_{n}
\end{array}\right)
$$

This shows that T is a linear transformation, with associated matrix A, as desired.

In-chos exercises:

1. Perform the following multiplications: $\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & -2\end{array}\right)\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{ccc}1 & -2 & 3 \\ -4 & 5 & -6 \\ 0 & 1 & -1\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
2. Express the statement "the vector $\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)$ is a linear combination of the vectors $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ with scalars $1,2,2$ with a mathematical statement of the form $A v=b$.
3. Prove that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfies $T(\lambda r)=\lambda T(r)$ for all $v \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$.
