Lecture 3
Change gears: vectors (Pre-class quit)
Depending on who you ask, a vector is

- An arrow in space (the physics student)
- A list of numbers (the CS student)
- An element in a vector space (the math student)

We will take the CS way, but be aware that these are all equivalent. This Definition 1: a vector v in \mathbb{R}^{n} is a tuple of real numbers: $\left(\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right)$.
Definition 2: The sum of two vectors $v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right), w=\left(\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right)$ is what you think it is: $v+w=\left(\begin{array}{c}v_{2}+w_{1} \\ v_{2}+w_{2} \\ v_{n}+w_{n}\end{array}\right)$
Definition 3: The multiplication of a vector $v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$ by a real number $\lambda \in \mathbb{R}$ (a"scalar") is abs what you think it is: $\lambda v=\left(\begin{array}{c}\lambda v_{1} \\ \vdots \\ \lambda v_{n}\end{array}\right)$

Example 1: $v=\binom{2}{1}$ is a vector in \mathbb{R}^{2}, and so $s ~ w=\binom{1}{2}$.
We can draw these as arrows from the origin to the respective coordinates

Their sum is then

Taking $\lambda=1.5, \lambda w=\binom{3}{1.5}$:

Discussion: consider the vectors $\hat{\imath}=\binom{1}{0}$ and $\hat{\jmath}=\binom{0}{1}$. Notice that we can sale $\hat{\imath}$ and $\hat{\jmath}$ and add them together to get any other vector For instance, the vector $v=\binom{2}{-1.5}$ can be written as $2-1.5 \hat{j}$.

Most of the time (in a sense that we're about to make precise), if you pick any two vectors, they will have this property: take $\hat{a}=\binom{2}{-1} \quad \hat{b}=\binom{-1}{3}$. Then, for instance, $v=\binom{1}{1}=0.8 \hat{a}+0.6 \hat{b}$

In fact, one can write any vector as $\lambda \hat{a}+\mu \hat{b}$ for sone $\lambda, \mu \in \mathbb{R}$. To find λ and μ, we just have to solve a system of linear equations!

$$
\begin{aligned}
& \lambda\binom{2}{-1}+\mu\binom{-1}{3}=\binom{1}{1} \\
& \left(\begin{array}{cc|c}
2 & -1 & 1 \\
-1 & 3 & 1
\end{array}\right) \xrightarrow{I \rightarrow \frac{1}{2} I}\left(\begin{array}{rr|r}
1 & -\frac{1}{2} & \frac{1}{2} \\
-1 & 3 & 1
\end{array}\right) \\
& \xrightarrow{\mathbb{I} \rightarrow \mathbb{I}+\mathbb{I}}\left(\begin{array}{cc|c}
1 & -\frac{1}{2} & \frac{1}{2} \\
0 & \frac{5}{2} & \frac{3}{2}
\end{array}\right) \\
& \xrightarrow{\mathbb{I} \rightarrow \frac{2}{3} \mathbb{T}}\left(\begin{array}{cc|c}
1 & -\frac{1}{2} & \frac{1}{2} \\
0 & 1 & \frac{3}{5}
\end{array}\right) \\
& \xrightarrow{I \rightarrow I+\frac{1}{2} I \mathbb{}}\left(\begin{array}{ll|l}
1 & 0 & \frac{4}{5} \\
0 & 1 & \frac{3}{5}
\end{array}\right)
\end{aligned}
$$

Definition 4: A vector b is called a linear combination of the vectors v_{1}, \ldots, v_{m} if it can be written as $w=\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}$ for some scalars $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$.

Example 2 The vector $\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)$ is equal to $1 \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+2 \cdot\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)+2 \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ so it is a linear combination of $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

Example 3: The vector $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is not a linear combination of the vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ Indeed, every linear combination will have to be of the form $\left(\begin{array}{l}* \\ x \\ 0\end{array}\right)$.

Example 4: Geometrically, a vector $w \in \mathbb{R}^{3}$ (in \mathbb{R}^{3}) is a linear combination of $u, v \in \mathbb{R}^{3}$ if and only if w lies in the plane containing "the arras" u and v

ω is a linear combination of u, v

w. so not a linear combination of u and v

Definition 5: let v_{2}, \ldots, v_{m} be vectors in \mathbb{R}^{n}. Then the span of v_{1}, \ldots, v_{m} is the set

$$
\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{m} v_{m}: \quad \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}^{n}\right\}
$$

Example 4: The span of the vector $v=\binom{2}{1}$ in \mathbb{R}^{2} is $\{\lambda v: \lambda \in \mathbb{R}\}=\left\{\binom{2 \lambda}{\lambda} \lambda \in \mathbb{R}\right\}$ Geometrically, it consists of all the vectors whose tip lies in the line containing v :

Example 5: The span of the vectors $v=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $w=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is $\left\{\left(\begin{array}{l}a \\ 0 \\ b\end{array}\right): a, b \in \mathbb{R}\right\}$ Geometrically, the span is
\qquad

Definition 6: a set of vectors v_{1}, \ldots, v_{m} is a spanning ret for \mathbb{R}^{n}. \mathcal{U} every vector $w \in \mathbb{R}^{n}$ is given by a linear combination of v_{1}, \ldots, v_{m}.

Example 6: $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
Is there anything weird in Example 6?
In general, we will want to avoid redundancies in our spanning sets. Here, $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ can be obtained as the sum of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
Definition 7 A set of vectors v_{1}, \ldots, v_{m} is fimarly independent iff whenever $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{m} v_{m}=0$, we must have $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{m}$.

In other words, the only linear combination summing to 0 is the obvias one: when all the λ_{i} are 0 .

Example 7: $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ are linearly independent: of $\lambda\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=0$, then $\left(\begin{array}{l}\lambda \\ \mu \\ 2 \lambda\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, so $\lambda=\mu=0$.
Example 8: $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ are not linearly independent $1\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+1\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)-1\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
Discussion: we have two potential notions of "no redundancies": $\begin{aligned} & \text { No linear dependea } \\ & \text { Minimum amount of gus }\end{aligned}$ The following theorem says that these two notions are actually the same.
Theorem 1: A set of vectors v_{A}, \ldots, v_{m} is a "minimal spamming set for \mathbb{R}^{n} if and only if. v_{1}, \ldots, v_{m} is a "maximal" linearly independent set in \mathbb{R}^{n}.
"minimal" spamming set: it is spanning and if you remove any vector, it stops being spanning
"maximal" linearly independent set: it is linearly independent and if you add another vector, it stops being lin indep.
Definition 8: A basis for \mathbb{R}^{n} is a spanning ext which is abs linearly independent.
Example 9: $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ form a basis. This is called the "canonical basis" of R^{n}

Proof of Theorem 1. (For the mathematically inclined)
\Rightarrow Assume v_{1}, \ldots, v_{m} is a minimal spanning $x t$. We prove first that it is linearly indexndent.
So set a linear combination $\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}$ equal to zero and let us prove that $\lambda_{1}=\ldots=\lambda_{m}=0$.
Suppose that is not the case, and one of the λ_{i} 's is nonzero. After reordering the λ_{i} 's, we may assume $\lambda_{1} \neq 0$ Bot then, $v_{1}=\frac{-\lambda_{2} v_{2}-\ldots-\lambda_{m} v_{m}}{\lambda_{1}}$, and so the set v_{2}, \ldots, v_{m} is also a generating set. This contradicts the minimality of v_{1}, \ldots, v_{m}. Thus ar assumption was wrong and therefore $\lambda_{1}=\ldots=\lambda_{m}=0$.
 Since v_{1}, \ldots, v_{m} is a spanning ret, $v_{m+1}=\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}$ for some $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$, not all of them zero. Bot then $\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}-v_{m+1}=0$, so v_{1}, \ldots, v_{m+1} is no longer linearly independent.
\Leftrightarrow Assume v_{1}, \ldots, v_{m} is maximally linearly independent. We show first that v_{1}, \ldots, v_{m} is spanning Assure v_{1}, \ldots, v_{m} did not span some vector v_{m+1}. Then $v_{1}, v_{2}, \ldots, v_{m}, v_{m+1}$ would be linearly independent: of $\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}+\lambda_{m+1} v_{m+1}=0$, then we have two cars:

- $\lambda_{m+1} \neq 0$ Then $v_{m+1}=\frac{-\lambda_{1} v_{2}-\ldots-\lambda_{m} v_{m}}{\lambda_{m+1}}$, contradicting the assumption that v_{1}, \ldots, v_{m} do not generate v_{m+1}
- $\lambda_{m+1}=0$ Then $\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}=0$, which implies $\lambda_{1}=\ldots=\lambda_{m}=0$ since v_{1}, \ldots, v_{m} are linearly indepencat We conclude that $\lambda_{1}=\ldots=\lambda_{m}=\lambda_{m+1}=0$, so $v_{1}, \ldots, v_{m}, v_{m+1}$ are linearly independent, contradicting the maximality assumption.
Finally we prove that the ext is minimal spanning Indeed, if v_{1}, \ldots, v_{m-1} are spanning, then $v_{m}=\lambda_{1} v_{1}+\ldots+\lambda_{m-1} v_{m-1}$, so $\lambda_{1} v_{1}+\ldots+\lambda_{m-1} v_{m-1}-v_{m}=0$. Thus v_{1}, \ldots, v_{m} are not linearly independent, a contradiction. It follows that v_{A}, \ldots, v_{m} are minimal spanning.
In-class exercise session :

1. Write the vector $\binom{-1}{1}$ as a linear combination of the vectors $\binom{1}{1},\binom{2}{2}$ and $\binom{0}{1}$
(one example is enough)
2. Do the vectors $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ span \mathbb{R}^{3} ? Why or why not?
3. Find a finally ides spanning set for the set of vators $\left\{\left(\begin{array}{l}a \\ b \\ c\end{array}\right): a+b=c\right\}$.
