lecture 2
Recap: - Systems of linear equations

- Augmented matrices
- RREFs and Gaussian elimination

Today: Systems with infinitely many solutions, rank of a matrix

Recall that lost time we had situations like
3 equations $\longleftrightarrow 3$ planes $\longleftrightarrow 1$ intersection point

However one could abo have a station like 3 equations $\longleftrightarrow 3$ planes \longleftrightarrow intersection is a line

Then, the solution set will have free variables, to account for all the possible values.

How does it work in terms of the augmented matrix? Suppose that, after Gaussian elimination we obtain:

$$
\left(\begin{array}{ccccc|c}
1 & 3 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Then the free variables will correspond to the non-pirst columns. In this care,

$$
\begin{aligned}
& x_{2}=t, t \in \mathbb{R} \\
& x_{4}=s, s \in \mathbb{R} \\
& x_{1}=-3 t+s \\
& x_{3}=2-2 s \\
& x_{5}=-3
\end{aligned}
$$

In other words, the solution set is $\{(-3 t+s, t, 2-2 s, s,-3) \mid t, s \in \mathbb{R}\}$
Definition 1: a linear system of equations is consistent (or "oumativi") If it has one (or more) solutions. His inconsistent if it has no solution.
Theorem 1 Let M be the augmented matrix of a linear system, and let A be an RREF for M. Then:

1) The system is consistent if and only if A has no row of the form $(0 \cdots 011)$
2) The system has a unique solution of and only of A is of the form

$$
\left(\begin{array}{ccccc}
1 & & & & * \\
& 1 & & & \\
& & \ddots & & \\
& & & & * \\
& & & & 0 \\
\vdots \\
& & & & 0
\end{array}\right)
$$

3) The solution set for a consistent system has s free variables, where $s=\#$ non-pivot columns to the felt of the divider
(We have seen examples of each)

Definition 2: the rank of a matrix A is the number of pints in an RREF for A
Corollary 1: Let $M=\left(A \left\lvert\, \begin{array}{c}* \\ \vdots \\ \vdots\end{array}\right.\right)$ be an augmented m-by-($n+1$) matrix for a linear system, with coefficient matrix A. Then,

1) $\operatorname{rank}(A) \leqslant m$ and $\operatorname{rank}(A) \leqslant n$
2) If the system is inconsistent, $\operatorname{rank}(A)<m$
3) If the system has a unique solution, $\operatorname{rank}(A)=n$
4) If the system has infinitely many solutions, $\operatorname{rank}(A)<n$

Proof: Let $M^{\prime}=\left(C^{\prime}\left(\begin{array}{c}* \\ \vdots \\ k\end{array}\right)\right.$ be an RREF for M (Note that C^{\prime} is also an RREF for C)
1)

\Rightarrow some row in C^{\prime} is $(0 \cdots 0)$ (has no pion)
\Rightarrow \#piots is <m
3) Unique solution $\stackrel{\text { Thrown } 1}{\Rightarrow} B$ folks like

$$
\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1 \\
& 0
\end{array}\right)
$$

$=$ \#pivots $=n$.
4) Infinitely many solutions \Rightarrow There are some free variables

Therese 1 \Rightarrow sone column in A docon't hare a pivot: $B=\underbrace{\left(1, A_{0}\right)}_{n}$
\Rightarrow \#pirts <n

Example 1: find the rank of the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$. How many solutions can the system associated to the augmented matrix $M=\left(\begin{array}{ccc|c}1 & 2 & 3 & 6 \\ 4 & 5 & 6 & 15 \\ 7 & 8 & 9 & 24\end{array}\right)$ have?

Rank: Step 1: put A in reef.

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) & \xrightarrow{\mathbb{I} \rightarrow \mathbb{I}-\mathbb{I}}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 9
\end{array}\right) \\
& \xrightarrow{\mathbb{I} \rightarrow \mathbb{I}-7 \cdot \mathbb{I}}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right) \\
& \xrightarrow{\mathbb{I \rightarrow} \rightarrow \frac{1}{3} \mathbb{I}}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -6 & -12
\end{array}\right) \\
& \xrightarrow{I \rightarrow I-2 \cdot \mathbb{I}}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & -6 & -12
\end{array}\right) \\
& \xrightarrow{\mathbb{I} \rightarrow \mathbb{I}+6 \cdot \mathbb{I}}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Step 2: Two pivots $\Rightarrow \operatorname{rank}(A)=2$.
Step 3 :
Number of solutions: if ve're handed the system $\left(\begin{array}{lll|l}1 & 2 & 3 & 6 \\ 4 & 5 & 6 & 15 \\ 7 & 8 & 9 & 24\end{array}\right)$, this has a solution: $(x, y, 2)=(1,1,1)$. Since the rank of A is $2<3=$ variables, the system most have infinitely many solutions:

Example 2: How many solutions does $M=\left(\begin{array}{lll|l}1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 1\end{array}\right)$ have?
No donas solutions \Rightarrow Need to use Gaussian elimination.

$$
\begin{aligned}
& \left(\left.\begin{array}{lll|l}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array} \right\rvert\,\right) \xrightarrow{\mathbb{I} \rightarrow \mathbb{I} \cdot 4 \cdot I}\left(\left.\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 9
\end{array} \right\rvert\, 0\right) \\
& \xrightarrow{\mathbb{T} \rightarrow \mathbb{I} \cdot \rightarrow \cdot}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right) \\
& \xrightarrow{\mathbb{I} \rightarrow \frac{1}{3} \mathbb{I}}\left(\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & -6 & -12 & 1
\end{array}\right) \\
& \xrightarrow{I \rightarrow I-2 I I}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & -6 & -12 & 1
\end{array}\right) \\
& \xrightarrow{\mathbb{I} \rightarrow \mathbb{\mathbb { K }}+6 \cdot \mathbb{I}}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

\Rightarrow System is inconsistent

Example 3: How many solutions does $M=\left(\begin{array}{ll|l}1 & 2 & 5 \\ 3 & 4 & 6\end{array}\right)$ have?
Step 1: $\operatorname{rank}(A)$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \xrightarrow{\mathbb{I} \rightarrow \pi-3:}\left(\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right) \xrightarrow{\mathbb{I} \rightarrow \frac{1}{2} \mathbb{I}}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \xrightarrow{I \rightarrow I-2 \mathbb{I}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Step 2: two pivots $\Rightarrow \operatorname{rank}(A)=2$
Step 3: $\operatorname{rank}(A)=$ variables \Rightarrow There is exactly one solution.

Example 4: For what vales of λ does the matrix $A=\left(\begin{array}{cc}2 & -1 \\ 1 & \lambda\end{array}\right)$ have rank 1 ?
Step 1: RREF: $\left(\begin{array}{cc}2 & -1 \\ 1 & \lambda\end{array}\right) \xrightarrow{I \rightarrow \frac{1}{2} I}\left(\begin{array}{cc}1 & -\frac{1}{2} \\ 1 & \lambda\end{array}\right) \xrightarrow{\mathbb{I} \rightarrow \mathbb{I}-I}\left(\begin{array}{cc}1 & -\frac{1}{2} \\ 0 & \lambda+\frac{1}{2}\end{array}\right)$
If $\lambda+\frac{1}{2} \neq 0$, then $\xrightarrow{\mathbb{I} \rightarrow \frac{1}{\lambda+\frac{1}{2}} \mathbb{I}}\left(\begin{array}{rr}1 & -\frac{1}{2} \\ 0 & 1\end{array}\right) \quad$ Two pivots: This cannot happen of $\operatorname{rank}(A)=1$.
Thus $\lambda=-\frac{1}{2}$, in which case $\operatorname{rref}(A)=\left(\begin{array}{rr}1 & -\frac{1}{2} \\ 0 & 0\end{array}\right)$ and indeed $\operatorname{van} x(A)=1$

Discussion: 2×2 matrices
Tale $M=\left(\begin{array}{ll|l}a & b & e \\ c & d & f\end{array}\right)$
If $\operatorname{rank}(A)=0$ then there are no pints, we didn't have a nonzero row to begin with.

$$
\Rightarrow A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Then, the system has a solution if $(e, j)=(0,0)$, in which care $(x, y)=(t, s)$ is a solution for each $t \in \mathbb{R}, s \in \mathbb{R}$.

If $\operatorname{rank}(A)=1$, we have a single pivot, so $\operatorname{rrf}(A)=\left(\begin{array}{ll}1 & * \\ 0 & 0\end{array}\right)$ or $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
Staring with $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and assuming $a \neq 0$ (other cases are similar), we get

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \xrightarrow{I \rightarrow \frac{1}{a} I}\left(\begin{array}{ll}
1 & \frac{b}{a} \\
c & d
\end{array}\right) \xrightarrow{\mathbb{I} \rightarrow \frac{I I}{}-c \cdot 1}\left(\begin{array}{ll}
1 & \frac{b}{a} \\
0 & d-\frac{b c}{a}
\end{array}\right)
$$

Since $\operatorname{rank}(A)=1, \lambda=d-\frac{b c}{a}$ must be zero, as otherwise we world get $\cdots \xrightarrow{\mathbb{I} \rightarrow \frac{1}{\lambda} \mathbb{I}}\left(\begin{array}{ll}1 & \frac{b}{a} \\ 0 & 1\end{array}\right)$ We see that $(c, d)=(c \cdot a, c \cdot b)$, a multiple of the first row. two pivots

If $\operatorname{rank}(A)=2$, the same computation shows that $d-\frac{b c}{a} \neq 0$ and the second row is not a multiple of the first row.

This is a bot to keep track of, especially with larger matrices. We will develop a theoretical framework to understand this data.

Main take-aways:

- 2×2 matrices have fell rank if and only if a certain quantity $a d-b c$ is $\neq 0$.
- 2×2 matrices cannot have full rank if ore is a multiple of another.

A look ahead: we can think of linear systems as follows

$$
\left.\begin{array}{l}
x+2 y=3 \\
x-3 y=-2 \tag{*}
\end{array}\right\}
$$

Can see this as a function

$$
\binom{x}{y} \rightarrow f \rightarrow\binom{x+2 y}{x-3 y}
$$

Let $\operatorname{Im}(f)=\{$ images of $f\}=\left\{\left.f\left(\binom{r}{s}\right) \right\rvert\, r, s \in \mathbb{R}\right\}$
Then the system $(*)$ has a solution translates to: is $\binom{3}{-2}$ in the image of f ? The main character in this course will be functions ouch as

$$
\binom{x}{y} \xrightarrow{f}\binom{x+2 y}{x-3 y}
$$

These tuples are called "vectors" and f is an example of a linear transformation. As we have seen, these are in correspondence with matrices In this car,

$$
f \longmapsto\left(\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right)
$$

Extra questions: (if you haven't seen this before) can you find f^{-1} ? In otter words, another function f^{-1} such that $f^{-1}\left(f\binom{x}{y}\right)=\binom{x}{y}$ for all $x, y \in \mathbb{R}$? What is the matrix associated to $f \circ f$ (f composed with itself)?

In-dass exercix session:

1. Find the solutions of the system with augmented matrix $\left(\begin{array}{ccc|c}1 & 2 & 3 & 6 \\ 4 & 5 & 6 & 15 \\ 7 & 8 & 9 & 24\end{array}\right)$ Verify that there's infinitely many.
2. Find a value of λ for which the matrix $\left(\begin{array}{ccc}-2 & -1 & 2 \\ 4 & 2 & -4 \\ 1 & \lambda & 1\end{array}\right)$ has rank 1.

Are there other values?
3. Find the solution to the system $\left(\begin{array}{ll|l}1 & 2 & a \\ 3 & 4 & b\end{array}\right)$ for each $a, b \in \mathbb{R}$.

