								• •	•	• •			•	
lective	2						• •			•				•
ucione		• • •						•••	•		• •		•	•
Recap	 Systems 	of linnar eq	juations							•				٠
• •	• Augmente	d matrices	• •	• • •	• • •		• •		•	• •		• • •	٠	٠
• •			· · ·	· · ·	• • •		• •	•••	•	• •	· •	• • •	•	•
• •	• KKEts	and Crauss	sian elim	lination	• • •	• • •	• •	• •	٠	0 1	• •		٥	•
Oday:	Systems	with infinited	y many	solution	s, rank	Jan	natrix.	• •	•				•	•
• •		• • •								• •				
	• • •	• • •	• •							• •				
Reco	Il that las	t time w	e had s	situations (ke		• •	• •	•	• •				•
	2 month a		2			· · · ·	 . t	• •	•	• •			٠	•
	S equilion	2	s più nes	, , , , -	-3 .1 .INT	SLACTION :	JUICK		•				•	•
		[1				• •	٠	• •				
					Solution .					•				
		K			•				•	• •			•	
• •						• • •	• •							•
					•		• •	• •	٠	•	•		٠	
									•	• •			•	•
· Ĥ	tourage on		le have		no lika				•	• •		• • •	•	
			no vinne		un une		• •	• •	•				•	•
3 4	quations +	-> 3 pl	anes	<	intersection	1. 15. a.	line		•	•			•	
• •	• • •	• • •	• •			• • •	• •	• •	٠	•	• •	• • •		
								• •	•	• •			•	•
			. /					• •	•	•			٠	•
• •	· · · · <						• •	• •	•	• •		• • •	•	
			<u>/</u> /						•	• •			•	•
• •	• • •	/.	\rightarrow	. /			• •			• •			•	
								• •	•	• •			•	•
									•					
Th.	n the s	lution not		hale 1	he would	to		t lar		Ha	part	la intra		*
1100	70	100 1 VIII 90	WILL	VIAT. /	/ T T \ / I I I \/ I 7.5	A IO		1 765	11.00	ine	1023017	AC YOUVE	J .	

	Suppose	that,	after	Gaussian	elimination
we obtain:					
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·	· ·	· · ·	· · · ·	· · · ·
Then the free variables will correspond to the non-pivot	colomns.	n this	ане,		
$x_{2} = t, t \in \mathbb{R}$ $x_{4} = s, s \in \mathbb{R}$ $x_{1} = -3t + s$ $x_{3} = 2 - 2s$ $x_{5} = -3$ $determined by the free variables$	· · · ·	· · ·	· · ·	 	
In other words, the solution set is $\{(-3t+s, t, 2-2s, s, -3)\}$	tise	TR S	•••		
Definition 1 a linear system of equations is consistent (or "com	patile") of	ith	as one	(or more)	solutions.
It is inconsistent ill it has no solution.	· · ·				
Theorem 1 Let M be the acquiented matrix of a linear sys	item, and	let	Α	be an	
RREF for M. Then			• •		
1) The system is consistent if and only if A has no row	of the	form	(0	- 011)	
	I	ι			
2) The system has a unique solution of and only of A	is of the	form	• •		
2) The system has a unique solution of and only of A $(1, 1^*)$	is of the	form	· ·	· · · ·	· · · ·
2) The system has a unique solution of and only of A $\begin{pmatrix} 1 & & & * \\ & 1 & & & * \\ & & 1 & & * \\ & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	is of the		· · · · · · · · · · · · · · · · · · ·	 . .<	
2) The system has a unique solution of and only of A $\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & & & \\ & & & \\ & & &$	is of the free varia	form bes, i	uhere	 . .<	 . .<
2) The system has a unique solution of and only of A $\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & & & \\ & & & \\ & & &$	is of the free varia	form brind ibes, i	where	 . .<	 . .<
 2) The system has a unique solution of and only of A 1 1 * 1 * 3) The solution set for a consistent system has s s = # non-privat columns to the teft of the divider. (We have seen examples of each) 	is of the free varia	form ibes, i	where a	 . .<	 . .<

Definition 2: the rank of a motion A is the number of pirets in an REF for A
(assillary 2: let H =
$$(A | \frac{1}{2})$$
 be an augmented m-by-(mis) matrix for a linear system, with
conflicent matrix A. Then,
a) rank(A) ≤ m and rank (A) ≤ n
b) If the system is increasibility, rank(A) < m
conflicent matrix A is a unique solution, rank (A) = n
conflicent matrix A is a unique solution, rank (A) = n
conflicent matrix A is a unique solution, rank (A) = n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) = n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution, rank (A) < n
conflicent matrix A is a unique solution for a for A (Note that C) is a n and sim.
conflicent matrix A is a point A doesn't hare a point B is a point A is a point A is a conflicen

xample	1: find	the	rank	of the	e matr	i× A =		23 56 89).	How	many	80	lutions.	can	the	syr
sociated	to the	z Quigm	ented mo	itrix	M = (1 2 3	(6) (15)	have	?	· ·						•
Rank	Step 1:	put A	in the	· · · ·		- 0 (• •	•	• •		•		• •	•	•
	· · · ·	2 3] II-4][-4]	(1 2	3 \	• •			•	•••	• •	•			•	•
	· · (4 · · · (7 :	56 89) ·	0-3	-6) 4)	• •		• •	•	•••		•	• •		• •	•
			□→ <u>□</u> -7·]	(1 (0 -	23) 3-6)		• •	• •	•	• •	· ·	•	• •	• •		•
		• •		· ` · • -	6 -12]				•			•	• •			
		• •			2 3 1 2		• •	• •	•				• •			•
• •		• •	 Т. т.ат		-6 -12)	• •	• •	• •	•	••••	• •	•	• •		•	•
					1 2 -6 -12		• •	• •	•	· ·		•	• •			•
· · ·	· · · ·	· ·	<u>π</u> → <u></u> π+6]		0 -1 ¹ 1 2 0 0		· ·	· ·	•	· ·	· ·	•	· ·	• •	· •	•
Step	2: Tu	UO pivõ	ts => 1	rank(A)	=2.		• •	• •	•	• •	• •	•	• •	• •	•	•
Ster	3	• •		· · ·	• •	· ·		· · · · · · · · · · · · · · · · · · ·	ح			•	• •		•	•
Num	per of so	litions	: il ve	're hand	red the	system		5	- - 6 - 9	15 24)	this	has	a sol	ution:	•
(х.ү.	(1) = (1)	1,1).	Since f	he rank	of A		3 =	t variable	is,	the s	estem 1	nust	have	infinite	ly ma	iny
soluti	ons .				• •			• •	•	• •		•	• •	• •	•	
• • •		• •		· · ·	• •	••••	• •	• •	•	• •	••••		• •	• •	•	•
Examp	le 2	tow w	any solut	ions doe	es M	$= \begin{pmatrix} \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \end{pmatrix}$	23		han	re ?			• •		•	
No	olorious sel	Utions	⇒ Need	d to us	e Gaus	sian el	im inatic	ю.	•	••••		•				•

$$\begin{pmatrix} 4 & 2 & 3 \\ 4 & 3 & 4 \\ 0 & 3 & 4 \\ \end{array} \end{pmatrix} \underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 2 & 3 \\ 0 & 3 & -4 \\ 0 & 3 & -4 \\ 0 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 2 & 3 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} + \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} + \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} + \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} + \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & 0 & -1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & -6 & -12 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & -2 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & -2 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & -2 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} + \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 4 & -2 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 3 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & -2 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & -2 & 0 \\ \end{aligned}$$

$$\underbrace{\mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & -2 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & -2 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & -2 & 0 \\ \end{aligned}$$

$$\underbrace{\mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & -2 & 0 \\ \end{array}$$

$$\underbrace{\mathbf{T} = \mathbf{T}}_{\mathbf{T}} \begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & -2$$

)15(02	sion Tc	n: Ve	2) 2) 1	× 2	mc = (itric (a	5 5	e J) 1 1 1 1	· · ·	•	•	· · ·	•	•	•	•	•	· · ·	•	•	•	•	•	•	•	· · ·	•
	IJ		ank	ι (Α	() = (5 . o '	the		there	a <i>ve</i>	No	pivots	 	NC .	did	nit	have		 1001	/ }cio	ſœ	ເນີ t	to 1	rgin		rth.	· · ·	•
•	Th	= ເ ເ ເ	" †	A= łe	l c system). 0) has	0. 5	ialutio		. (e	,∫)=	(ð, ð	رو ر		which		.je	. (×.	ئے (لا	(t, s))	is o zach	solut te	tion R,	for s∈[R	•
	ł	Yan	ķ (A.)	= 1,	• ••	ue .	hav	e a	single	e pive	.t, s		rref	(A)	- 11 -		(*)	 . 0	۲		1).).	•	•	•	• •	•
•	St	artin (9	ai	h	A =		a b c d) ()	and	a sejim in	ng Ng	a ≠0	.(1	sther	Q x	م د	ave si	miler	·),	We	e get	•	•	•	•	• •	•
		•		a !	?) 1		I	(1	5		-)Ⅲ-c 	• 1	· · ·		2		•	•	• •		•	•	•	•	•	•	• •	•
•	S.			 	(Δ)	. 1	· ·	ر د ا د ا	. a bc	J must	he	Pero	· \ ·(י כ מו	t- <u>e</u> otheru	<u>c</u> j i	(4)10	und	 d	F	Ē		-1	, 1 1	1	م	· ·	•
•	ы. (л.	чс	. 1	анк 	hat	,- <u>-</u>	· · · · · · · · · · · · · · · · · · ·	- ų	<u>a</u>		·~~		et of	2 . 2 . J	4	ha P		,	y yer 	с.	•	•	•		0	1)	•
•			See	I 	nat	. (C	ر مر. 		(Ç • a	رد . ی بر با	. د ر	v , "		- 9	، . ام ا	κ. [·				•		•	•	T <u>w</u> a	₽. pi	ivots.	· ·	•
		roul	L (F	+)=	= ~ ,	. 17e	2. Sai	ме .1	(Ollapute	ation .	sha	¶ 2u	hat	d -	<u>ос</u> а	≠¢	.	and	. th	2 SC	cond	rou		n <u>ot</u>	. a	mult	iple.	•
	┦	the	. [i\	ret	raw	•	• •	•	•		•	•	• •	•	•	•	•	•		•	•	•	•	•	•	•	· ·	•
	Th	is	,2	ď	ßt	to	Keep	troc	k of	<u>ن</u> (especia	lly .	urlh	lor	gor	mati	nc es	. 1	ye y	niCl.	dev	elop	Q.	the	oreti	cal	fran	ework
	to	. u	nde	vsto	nd t	this	data	·		• •	•				•			•		•			•		•			
•		<u>H</u>	ain	te	ake-o	iway.	Ş:	•	•	• •	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •	•
· ·	•	, 2 ,	2	N	at <u>rice</u>	S	have	re	rank	if	and	only	 1. J.	ġ.	cert	ain	quan	itity	a	d -k	مد	ı Ş	≠	0 0	•	•	• •	•
· ·	•	, ,2,	• 2	. n	notrice	م	Can	not	have	jul	rauk	j	one	iş	۵	mult	iple	୍ବ	ano	ther		•	•	•	•	•		•
		•	•		•	•			•				• •						• •						•	•		
				•	•	•	• •																					
		•	•	•	•	•	• •	•	•	••••	•	•	••••	•	•	•	•	•	• •	•	0	*	•	•	•	•	• •	•
		•	•		•	•			•	• •	•	•	• •			•	•	•					•	•		•		•
				٠																								
•		•	•	٠	•	•	• •	•	•	• •	٠	•	• •	•	٠	٠	•	•	• •	•	٠	•	•	•	•	•	• •	•

A look ahead: we can think of linear systems as follows:
x + 2y = 3 x - 3y = -2 (*) Gan see this as a function
$\begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow \begin{cases} x + 2y \\ x - 3y \end{cases}$
let $Im(g) = 1$ images of $f(s) = 1 f((s)) r, s \in \mathbb{R}^{n}$
Then the system (*) has a solution translates to: is $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ in the image of f ?
The main character in this course will be functions such as
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
These tuples are called "rectors" and 1 is an example of a finear transformation.
These tuples are called "rectors" and J is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this care,
These tuples are called "rectors" and j is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this care, $j \leftarrow \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$
These tuples are called "vectors" and f is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this care, $f \qquad \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$ Extra questions (if you haven't seen this before): can you find f' ? In other words,
These tuples are called "rectors" and f is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this care, $f \mapsto \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$ Extra questions (if you haven't seen this before) can you find f' ? In other words, another function f' such that $f'(f(x)) = \begin{pmatrix} x \\ y \end{pmatrix}$ for all $x, y \in \mathbb{R}$?
These tuples are called "rectors" and f is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this are, $f \longrightarrow \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$ Extra questions: (if you haven't seen this before): can you find f^- ? In other words, another function f^- such that $f^-(f(\frac{x}{y})) = \begin{pmatrix} x \\ y \end{pmatrix}$ for all $x, y \in \mathbb{R}$? What is the matrix associated to $f \cdot f$ (if composed with itself)?
These tuples are called "rectors" and f is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this are, $f = \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$ Extra questions: (if you haven't seen this before): can you find f^- ? In other words, another function f^- such that $f^-(f(\frac{x}{y})) = \begin{pmatrix} x \\ y \end{pmatrix}$ for all $x, y \in \mathbb{R}$? What is the matrix associated to $f \cdot f$ (f composed with itself)?
These tuples are called "vectors" and f is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this car, $f \mapsto \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$ Extra questions: (if you haven't seen this before): can you find f' ? In other words, another function f' such that $f''(f(\frac{x}{y})) = \begin{pmatrix} x \\ y \end{pmatrix}$ for all $x, y \in \mathbb{R}$? What is the matrix associated to fif (f composed with itself)?
These tuples are called "vectors" and f is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this are, $f \leftarrow \begin{pmatrix} 4 & 2 \\ 1 & -3 \end{pmatrix}$ Extra questions: (if you haven't seen this before): can you find f^2 ? In other words, another function f^{-1} such that $f^{-1}(f(\frac{x}{y})) = \begin{pmatrix} x \\ y \end{pmatrix}$ for all $x, y \in \mathbb{R}$? What is the matrix associated to $f \cdot f$ (if composed with itself)?
These tuples are called "vectors" and f is an example of a finear transformation. As we have seen, these are in correspondence with matrices. In this are, $f \leftarrow \begin{pmatrix} 4 & 2 \\ A & -3 \end{pmatrix}$ Extra questions (if you haven't seen this before): can you find f^+ ? In other words, another function f^- such that $f^+(f(x)) = \begin{pmatrix} x \\ y \end{pmatrix}$ for all $x, y \in \mathbb{R}$? What is the matrix associated to $f \cdot f$ (f composed with itself)?

•	1	. Fin	d Ħ	e Sa	Rutior	6. (of f	ke s	system	Ŵ	ith	augun	ontec	d n	vatr	١×		л Ч а	2 5 8	З 6 5		6. 15. 24		Ver	Ŧy	that	t.
	-	there's	infir	ntely	mai	ι γ ,	•	•			•	•	• ,	•	•	•	· 、 - 、			ч	r •	- 1 /		•			
•	,2	Find	a v	alue	J Y	þr	· u	hich	the	matri	X.	•	((-2 .4	. – I . 2	- - -	2-4	•	has	Yan	k.	1.	•		•	•	
•		Are	ttere	: other	r vali	es?	•	•	••••	•	•	•	. \	, 1		•	. 		· ·		•	•	•	•	•	•	
•	3.	Find	the	solu	tion	to	Ð	re .	System)		1 2 3 4		b	•	fər	each	. a	,5€F		•	•	•	•	•	•	•
•	•		•				÷	•			•		÷	•	•	•	•	•		•	•	•	•	•	•	•	
•						•	•	•		•		•	•		•	•	•			•	•	•	•	•	•	•	•
			٠	•	• •		٠	٠			٠	•	•	•	٠	٠	•	•			٠	٠	٠		•	٠	
•	•	• •	•	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•
•	•	• •	•	• •	• •	•	•	•		•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•		
	•	• •		•		•	•		• •		٠			•	•		•	•		٠		•					
•	•	• •	•	•		•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	
	٠	• •	٠	•			٠	٠			•		•	•	•	٠	•	•		٠	٠		•		•	٠	
•	•		•			•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	
	•	• •		•			•				•				•		•			٠						٠	
•	•	• •	•	•		•	•	•	• •	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•		
	•		•			•	•				•	•	*	*	•		•			•	•			•	*	•	
•	٠	• •	٠	•	• •	•	٠	0	• •	•	٠	٠		٠			٠	•	• •			٠		٠	•		
•	•		•	•		•	•	•		•	•	•	•	•	•	•	•			•		•	•	•	•		
	٠	• •		•	• •		٠	٠			٠	٠	٠	•		٠	•	•	• •		٠			•		0	
•	•	• •	•	•		•	•	•	• •			•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•
	٠											٠			•		•			8						0	
				•									•		•	•	•	•					•				
•	•	• •	•	•		•	•	•	• •	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•
				•									٠														
	•	• •	•	•		•	•	•	• •		•	•		•	•	•	•	•	• •			•		•		•	
•																											