Lecture 19
Solutions to in-dass exercises

Today: Singular Valve Decomposition (SVD).
Discussion: the SVD of a matrix is a factorization $\quad A=U \Sigma V^{\top}$
It has some of the most important applications across STEM.

The point Setting the lax few orris to 0 loses very little inpruation (they tend to be small). How does t work?
The whole idea is finding an orthonormal basis v_{1}, \ldots, v_{n} of R^{n} such that $A u_{1}, \ldots$, , Au n are orthogonal. For instance: If A is a 2×2 rotation matrix, any orthonormal basis will do. If A is symmetric and 2×2, we can find its orthogonal diagonalization with respect to the basis v_{1}, v_{2}. Then

$$
A v_{1} \cdot A v_{2}=\lambda_{\mu}\left(v_{1} \cdot v_{2}\right)=0
$$

Bot what of A is, say, a shear? Then A^{\prime} 's not so clear.
Brilliant idea: $A^{\top} A$ is symmetric, so it has an orthonormal diagonalization with basis v_{1}, \ldots, v_{n} $\underbrace{n \times m m \times n}_{n \times n}$.
Then $A v_{1}, \ldots, A v_{n}$ are orthogonal! Indeed, $A v_{i} \cdot A v_{j}=v_{i}^{\top} A^{\top} A v_{j}=v_{i}^{\top} \lambda_{j} v_{j}=\lambda_{j} \cdot v_{i}^{\top} \cdot v_{j}=0$ Furthermore $\left\|A v_{i}\right\|=\sqrt{A v_{i} \cdot A v_{i}}=\sqrt{\left(A v_{i}\right)^{\top}\left(A v_{i}\right)}=\sqrt{v_{i}^{\top} A^{\top} A v_{i}}=\sqrt{\lambda_{i} v_{i}^{\top} v_{i}}=\sqrt{\lambda_{i}}$. Important observation: A and v_{i} are real, so llAvill is real. Therefore λ_{i} cannot be negative!

Definition 1: Let A be an $m \times n$ matrix. Let $\lambda_{1}, \ldots, \lambda_{n} \geqslant 0$ be the eigenvalues of $A^{\top} A$ (with repetitions) Then the singular values of A are $\sigma_{1}=\sqrt{\lambda_{1}}, \ldots, \sigma_{n}=\sqrt{\lambda_{n}}$.
From now on, order the singular vales so that $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{n} \geqslant 0$.

Observe if $r=\operatorname{rank}(A)$, the first r singular values will be nomero, and the rest 0 Set $u_{1}=\frac{A v_{1}}{\sigma_{1}}, \ldots, u_{r}=\frac{A v_{1}}{\sigma_{r}}$, and complete u_{1}, \ldots, u_{r} to an athoromal basis u_{1}, \ldots, u_{m} of \mathbb{R}^{m}.
Then,

$$
\begin{aligned}
A \cdot\left(\begin{array}{cc}
1 & 1 \\
v_{1} & \cdots \\
1 & v_{n}
\end{array}\right) & =\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 1 \\
\sigma_{1} u_{1} & \cdots & \sigma_{r} u_{1} & 0 & \ldots & 0 \\
1 & & 1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & u_{1} & u_{r} \\
1 & & 1
\end{array}\right)\left(\begin{array}{lll|l}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{n} & 0 \\
\hline 0 & 0
\end{array}\right)
\end{aligned}
$$

Therefore, $A=\left(\begin{array}{ccc}1 & & 1 \\ u_{1} & \cdots & u_{r} \\ 1 & & 1\end{array}\right)\left(\begin{array}{cc|c}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{n} & 0 \\ \hline 0 & 0\end{array}\right)\left(\begin{array}{ccc}1 & 1 & 1 \\ v_{1} & \cdots & v_{n} \\ 1 & 1\end{array}\right)^{\top} \quad$ SVD of A

Example 1: Consider $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 1\end{array}\right)$ Then, $A^{\top} A=\left(\begin{array}{ll}6 & 5 \\ 5 & 6\end{array}\right)$

$$
\text { char poly }\left(A^{\top} A\right)=(6-\lambda)^{2}-25=36-12 \lambda+\lambda^{2}-25=\lambda^{2}-12 \lambda+11=(\lambda-1)(\lambda-1)
$$

Singular values: $\sigma_{1}=\sqrt{11}, \sigma_{2}=1$. (l norder!)

$$
\begin{aligned}
& E_{11}=\operatorname{Ker}\left(\begin{array}{cc}
-s & s \\
s & -s
\end{array}\right)=\operatorname{Span}\left(\binom{1}{1}\right) \quad E_{1}=\operatorname{Ker}\left(\begin{array}{cc}
s & s \\
s & s
\end{array}\right)=\operatorname{Span}\left(\binom{1}{-1}\right) \\
& v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}
\end{aligned}
$$

Finally $u_{1}=\frac{A v_{1}}{\sigma_{1}}=\frac{1}{\sqrt{22}}\left(\begin{array}{l}3 \\ 3 \\ 2\end{array}\right), \quad u_{2}=\frac{A v_{2}}{\sigma_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right)$
To find u_{3}, consider $w=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ The vectors u_{1}, u_{2}, w form a basis, and u_{1}, u_{2} are already orthonormal: Now $w^{\perp}=w-\left(w \cdot u_{1}\right) u_{1}-\left(w \cdot u_{2}\right) u_{2}$

$$
\begin{aligned}
& =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\frac{3}{\sqrt{22}} \cdot \frac{1}{\sqrt{22}}\left(\begin{array}{l}
3 \\
3 \\
2
\end{array}\right)+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\binom{-1}{1} \\
& =\frac{1}{22}\left(\begin{array}{c}
2 \\
2 \\
-6
\end{array}\right)=\frac{1}{11}\binom{1}{-3} \Rightarrow u_{3}=\frac{1}{\sqrt{11}}\binom{1}{-3}
\end{aligned}
$$

Finally, $A=\left(\begin{array}{ccc}3 / \sqrt{22} & -1 / \sqrt{2} & 1 / \sqrt{\sqrt{2}} \\ 3 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{11} \\ 2 / \sqrt{22} & 0 & -3 / \sqrt{11}\end{array}\right)\left(\begin{array}{cc}\sqrt{11} & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{\top} \quad$ SVD for A [Application on Octare]

In-chis exercix: find the SVD of $\left(\begin{array}{cc}6 & 2 \\ -7 & 6\end{array}\right)$.

