Lecture 18
Solutions to the in-class exercises

1. $Q^{\top} Q=I_{n} \Rightarrow \operatorname{det}\left(Q^{\top}\right) \operatorname{det}(Q)=1 \Rightarrow \operatorname{det}(Q)^{2}=1 \Rightarrow \operatorname{det}(Q)= \pm 1$.
2. Eigenvalues: 1 and 3 Eigenspaces: $E_{1}=\operatorname{Span}\left(\binom{1}{-1}\right), E_{3}=\operatorname{Span}\left(\binom{1}{1}\right)$

So $\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right) \quad$ on bans $\frac{1}{\sqrt{2}}\binom{1}{-1} \quad$ on basis $\frac{1}{\sqrt{2}}\binom{1}{1}$
Today: Assorted topics and questions
Some things we didn't cover but I should mention

- Cross products : you've already done the quiz.
- Determinant of a 3×3 matrix

If you have seen determinants before, chances are you were taught to compote the determinant of a 3×3 matrix as follows:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{22} & a_{33}
\end{array}\right)=\left(a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}\right)-\left(a_{13} a_{22} a_{31}+a_{12} a_{21} a_{33}+a_{11} a_{23} a_{32}\right) \text {. }
\end{aligned}
$$

Note: Laplacian expansion is equally fast and generalizes better.

- The inverse of a matrix.

If you have seen inverses before, chances are you were taught to compose the inverse of a matrix as follows: $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{Adj}(A)^{\top}$

This has theoretical value bot it's more prone to mistakes (signs, trampopes..) than Gaussian elimination.

- Cramer's rule:

If A is invertible and we have a sydem $A\left(\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{l}b_{i} \\ \vdots \\ b_{n}\end{array}\right)$, then $x_{i}=\frac{\operatorname{det}\left(\begin{array}{ccc}a_{n} & \ldots & b_{1} \\ \vdots & \ldots & a_{n 1} \\ a_{1 m} & \ldots & b_{n}\end{array}\right)}{\operatorname{det}(A)}$
Again this has some theoretical value but it's much slower than Gaussian diminution:

- LU decomposition

Just like the Gram-Schmidt algorithm yields a factorization $A=Q R$, Gaussian elimination gives a factorization $A=L U$, where L is lower triangular and U is upper triangular.
Computers generally solve systems using the LU factorization. An example:

$$
A=\left(\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right) \xrightarrow[L_{1}=\left(\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right)]{I \rightarrow \frac{1}{2} I}\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right) \xrightarrow[L_{2}=\left(\begin{array}{ll}
1 & 0 \\
-1 & 1
\end{array}\right)]{\mathbb{I} \rightarrow \mathbb{I}-I}\left(\begin{array}{cc}
1 & 2 \\
0 & -3
\end{array}\right) \xrightarrow[L_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{-3}
\end{array}\right)]{\stackrel{I \rightarrow \frac{1}{-3} \mathbb{I}}{\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)}}
$$

Now $L_{1}^{-1}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right), L_{2}^{-1}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), L_{3}^{-1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -3\end{array}\right)$ so

$$
L_{3} L_{2} L_{1} A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \Rightarrow A=\underbrace{L_{1}^{-1} L_{2}^{-1} L_{3}^{-1}}_{L} U=\left(\begin{array}{cc}
2 & 0 \\
1 & -3
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

- Lineanty condition to check that a transformation is linear, we usually apply the definition: $T(v+w)=T(v)+T(w)$ and $T(\lambda v)=\lambda T(v)$. However, these can be condensed into ore: a linear tranformation is linear of for all $v, w \in \mathbb{R}^{n}, \lambda, \mu \in \mathbb{R}, \quad T(\lambda v+\mu w)=\lambda T(v)+\mu T(\omega)$. (It's easy to see these are equivalent)
- Inner product spaces

The dot product/orthogonality business has an important generalization: a vector space V is an inner product space of it comes with a "product" $\langle v, w\rangle$ such that: 1. $\langle v, w\rangle=\langle w, v\rangle$
2. $\left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle$
3. $\langle v v, w\rangle=c\langle v, w\rangle$.
4. $\langle v, v\rangle \geqslant 0$

Important example which is not \mathbb{R}^{n} : continuous functions $f[-\pi, \pi] \rightarrow \mathbb{R}$ (e.g. $\sin (x)$)

The inner product on this is given by $\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) g(t) d t$.
This space (essentially...) has a basis given by $\sin (n x), \cos (n x)$ for all $n \in \mathbb{Z}$.
The problem is: given a function $f\left(e . g . f=x^{2}\right)$, what are the scalars such that

$$
x^{2}=\lambda_{1} \sin (x)+\mu_{1} \cos (x)+\lambda_{2} \sin (2 x)+\mu_{2} \cos (2 x)+\ldots \quad ?
$$

Gaussian elimination will not work infinitely many columns!)
Answer: t turns art this basis is orthonormal, so e.g.

$$
\begin{aligned}
& \lambda_{1}=\left\langle\sin (x), x^{2}\right\rangle \\
& \mu_{1}=\left\langle\cos (x), x^{2}\right\rangle
\end{aligned}
$$

This is the beginning of Fourier series, which has remarkable applications in sound engineering, physics and math. (See $3 B 1 B$'s videos)

- Differential equations

The differential equation

$$
\begin{cases}\frac{d x(t)}{d t}=x(t) \\ x(0)=x_{0} & \text { is easy to solve: } \frac{x^{\prime}}{x}=1 \Rightarrow \int \frac{x^{\prime}}{x} d t=t+C \Rightarrow \ln (x)=t+C \Rightarrow x=k \cdot e^{t} \\ & x(0)=x_{0} \Rightarrow x=e^{t} \cdot x_{0}\end{cases}
$$

- Quadratic forms:

A quadratic form is a polynomial in x_{1}, \ldots, x_{n} of the form $\sum_{i, j=1}^{n} \lambda_{i j} x_{i} x_{j}$
Thee can be seen as maps $x \mapsto x^{\top} A x$, for some symmetric matrix A
This allows one to change basis into the more pleasing form $\lambda_{1} y_{1}{ }^{2}+\ldots+\lambda_{n} y_{n}{ }^{2}$
Geometrically, these are things like finding the axes of an ellipse.
Not much use outside pure math that 1 know of

Assorted questions

TRUE OR FALSE?

1. If T is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} such that $T\left(\vec{e}_{1}\right), T\left(\vec{e}_{2}\right), \ldots, T\left(\vec{e}_{n}\right)$ are all unit vectors, then T must be an orthogonal transformation.
2. If A is an invertible matrix, then the equation $\left(A^{T}\right)^{-1}=$ $\left(A^{-1}\right)^{T}$ must hold.
3. If matrix A is orthogonal, then matrix A^{2} must be orthogonal as well.
4. The equation $(A B)^{T}=A^{T} B^{T}$ holds for all $n \times n$ matries A and B.
5. If A and B are symmetric $n \times n$ matrices, then $A+B$ must be symmetric as well.
6. If matrices A and S are orthogonal, then $S^{-1} A S$ is orthogonal as well.
7. All nonzero symmetric matrices are invertible.
8. If A is an $n \times n$ matrix such that $A A^{T}=I_{n}$, then A must be an orthogonal matrix.
9. If \vec{u} is a unit vector in \mathbb{R}^{n}, and $L=\operatorname{span}(\vec{u})$, then $\operatorname{proj}_{L}(\vec{x})=(\vec{x} \cdot \vec{u}) \vec{x}$ for all vectors \vec{x} in \mathbb{R}^{n}
10. If A and B are symmetric $n \times n$ matrices, then $A B B A$ must be symmetric as well.
11. If matrices A and B commute, then matrices A^{T} and B^{T} must commute as well.
12. There exists a subspace V of \mathbb{R}^{5} such that $\operatorname{dim}(V)=$ $\operatorname{dim}\left(V^{\perp}\right)$, where V^{\perp} denotes the orthogonal complement of V.
13. Every invertible matrix A can be expressed as the product of an orthogonal matrix and an upper triangular matrix.
14. The determinant of all orthogonal 2×2 matrices is 1 .
15. If A is any square matrix, then matrix $\frac{1}{2}\left(A-A^{T}\right)$ is skew-symmetric.
16. The entries of an orthogonal matrix are all less than or equal to 1 .
17. Every nonzero subspace of \mathbb{R}^{n} has an orthonormal basis.
18. $\left[\begin{array}{rr}3 & -4 \\ 4 & 3\end{array}\right]$ is an orthogonal matrix.
(Note: solutions can be fond in the instructor's manual)
