Lecture 16
Note: what you need to know about \mathbb{C} :

- How to divide complex numbers
- How to factor polynomials if degree $\leqslant 2 \Rightarrow$ Us quadratic formula If degree $\geqslant 3$: look for integer solution $\lambda=n$
- HW has to be tedious sometimes... and divide the polynomial by $\lambda-n$.

In-class exercises
Let $S=\operatorname{Span}\left(\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right)$ Let $v=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. Find $v^{\prime \prime}$ and v^{t}
Orthonormal basis: $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. Then $\left.v^{\prime \prime}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \cdot v\right)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\left(\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \cdot v\right)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=1 \cdot\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+2\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.

$$
v^{\perp}=v-v^{\prime \prime}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right) .
$$

Recap:

- length: $\|v\|=\sqrt{v_{1}^{2}+\ldots+v_{0}^{2}}$
- Orthogonal vectors $v \cdot w=0$
- Unit vector: \|u ll $=1$.
- Orthonormal vectors : $u_{i} \cdot u_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$
- Orthogonal projection: have a subspace $S \subseteq \mathbb{R}^{n}$ and an orthonormal basis u_{1}, \ldots, u_{S}

Then if $v \in \mathbb{R}^{n}$, the projection of v onto S is $v^{\prime \prime}=\operatorname{prg}_{5}(v)=\left(u_{1} v\right) u_{1}+\ldots+\left(u_{s} v\right) u_{s}$ The perpendicular component is $v^{\perp}=v-v^{\prime \prime}$

Today: the Gram-Schmidt process and QR factorization.
But first: motivation for orthogonal projections
Suppose you have an inconsistent system $A x=b$
Instead of calling it a day, we can find the vector $x_{0} \in \mathbb{R}^{n}$ so that $\left\|A x_{0}-b\right\|$ is minimum

Picture:

The vector $b^{\prime \prime}=A x_{0}$ is the closest vector to b inside the subspace $\operatorname{lm}(A)$. This is sometimes called the "least squares solfioion" to the system $A x=b$.

Lar tine we proved that projections are linear Recall the example
Example 3 from lee 15 : Consider $S=\operatorname{Span}\left(\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right)$, and $v=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
Then prog $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(e_{1} \cdot u_{1}\right) \cdot u_{1}+\left(e_{1} \cdot u_{2}\right) \cdot u_{2}$

$$
\left.\begin{array}{rl}
& =\frac{1}{\sqrt{2}} \cdot u_{1}+0 \cdot u_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
\operatorname{prog}_{s}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) & =\left(e_{2} \cdot u_{1}\right) u_{1}+\left(e_{2} \cdot u_{2}\right) u_{2} \\
& =\frac{1}{\sqrt{2}} u_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
\operatorname{proj}_{S}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) & =\left(e_{1} u_{1}\right) u_{1}+\left(e_{2} \cdot u_{2}\right) u_{2}=0 u_{1}+u_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{array}\right\} \quad \text { projs is given by the }
$$

projs is given by the matrix

Question: what is the matrix of projs?
Theorem 1: Let $S \subseteq \mathbb{R}^{n}$ be a subspace, and let $u_{1}, \ldots, u_{s} \in S$ be an orthonormal basis for S. Let $Q=\left(\begin{array}{cc}1 & 1 \\ u_{1} & \cdots \\ 1 & u_{3}\end{array}\right) \quad\left(n \times s\right.$ matrix). Then the matrix of props: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $Q Q^{\top}$
Proof: We need to show that prods $\left(e_{i}\right)$ is the th column of $Q Q^{\top}$. Consider u_{1}, \ldots, u_{s} and extend them to a basis B :

$$
\begin{aligned}
& u_{1}, \ldots, u_{s}, v_{s+1}, \ldots, v_{n} \text { of } \mathbb{R}^{n} \text {. Then: } \\
& \operatorname{prg}_{5}\left(e_{i}\right)=\left(u_{i} e_{i}\right) u_{1}+\ldots+\left(u_{3} \cdot e_{i}\right) u_{3} \\
& =\left(\begin{array}{c}
u_{1}, c_{i} \\
u_{i}, c_{i} \\
\vdots \\
j
\end{array}\right)_{B} \\
& =S_{B \rightarrow C}\left(\begin{array}{c}
u_{1}, e_{1} \\
u_{0}, c_{i} \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =Q Q^{\top}\left(e_{i}\right)
\end{aligned}
$$

The question now is: how do we find orthonormal bases?
Answer: the Gram-Schmict process.
Gram-Schmidt process:
Let v_{1}, \ldots, v_{s} be a basis of $S \subseteq \mathbb{R}^{n}$. Let $i=1$ and $v_{1}=v_{1}$.

1. Normalize $v_{i}^{1}: \quad u_{i}=\frac{v_{i}^{1}}{\left\|v_{i}^{+}\right\|}$let $i \rightarrow i+1$
2. Make v_{i} orthogonal to $u_{1}, \ldots, u_{1-1}: v_{i}^{\perp}=v_{1}-\left(u_{1} \cdot v_{i}\right) u_{1}-\ldots-\left(u_{i-1} \cdot v_{i}\right) u_{i-1}$. Go back to 1 .

Example 1: Let $S=\mathbb{R}^{3}$ with basis $B: \quad v_{1}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.

1) $u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|^{2}}=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=\frac{1}{\sqrt{3}}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$
2) $v_{2}^{1}=v_{2}-\left(u_{1} \cdot v_{2}\right) u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)-\frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=\frac{1}{3}\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
3) $u_{2}=\frac{v_{2}^{1}}{\left\|w_{2}^{2}\right\|}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
4) $v_{3}^{1}=v_{3}-\left(u_{1} \cdot v_{3}\right) u_{1}-\left(u_{2} \cdot v_{3}\right) u_{2}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)-\frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)-\frac{3}{\sqrt{6}} \cdot \frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{c}1-\frac{2}{3}-\frac{1}{2} \\ 1+\frac{2}{3}-\frac{1}{2} \\ 2-\frac{2}{3}-1\end{array}\right)=\frac{1}{6}\left(\begin{array}{c}-1 \\ 7 \\ 2\end{array}\right)$
5) $u_{3}=\frac{1}{3 \sqrt{6}}\left(\begin{array}{c}-1 \\ 7 \\ 2\end{array}\right)$

Finally u_{1}, u_{2}, u_{3} are an orthonormal basis of $S=\mathbb{R}^{3}$
QR factorization
The Gram-Schmict process produces a factorization of the matrix $A=\left(\begin{array}{ll}1 & 1 \\ v_{1} & 1 \\ 1 & v_{s}\end{array}\right)$, as follows:
First, wite $A=\left(\begin{array}{ll}1 & 1 \\ v_{1}\end{array}\right)$ First, wite $A=\left(\begin{array}{ccc}1 & & 1 \\ v_{1} & \cdots & v_{0} \\ \underbrace{}_{\text {basis of }} & 1\end{array}\right)$.

Then Gram-Schmidt yields $v_{1}=\left\|v_{1}\right\| u_{1}$,

$$
\begin{aligned}
& v_{2}=\left\|v_{2}^{\perp}\right\| \cdot v_{2}^{\perp}+\left(u_{1} \cdot v_{2}\right) u_{1} \\
& v_{3}=\left\|v_{3}^{\perp}\right\| \cdot v_{3}^{\perp}+\left(u_{1} \cdot v_{3}\right) u_{1}+\left(u_{2} \cdot v_{3}\right) u_{2} \\
& v_{4}=\text { etc. }
\end{aligned}
$$

Definition 1: This is the QR factorization of A.
Example $1\left(c t d^{\prime}\right):\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 2\end{array}\right)=(\begin{array}{cccc}1 / 3 & 1 / \sqrt{6} & -1 / \sqrt{3} \\ -1 / \sqrt{3} & 2 / \sqrt{6} & 7 / 3 \sqrt{3} \\ 1 / \sqrt{3} & 1 / \sqrt{6} & 2 / 3 \sqrt{3}\end{array}(\underbrace{\left(\begin{array}{ccc}\sqrt{3} & \frac{2}{\sqrt{3}} & \frac{2}{\sqrt{3}} \\ 0 & \frac{5}{3} & \frac{3}{\sqrt{6}} \\ 0 & 0 & 3 \sqrt{3}\end{array}\right)}_{\text {we comptad these when dong Gram- Schmidt }}$
Othogonol Transformations
Definition 2 An nan matrix Q is orthogonal ill is columns consist of an orthonormal basis $B: u_{1}, \ldots, u_{n}$

$$
Q=\left(\begin{array}{ll}
1 & 1 \\
u_{1} & u_{n} \\
1 & 1
\end{array}\right)\left(=S_{B \rightarrow e}\right)
$$

Recall that the transpose of a matrix Q is the matin Q^{\top} whose columns are the rows in Q
Fact: $(A B)^{\top}=B^{\top} A^{\top} \quad$ Proof: in-class exercise.
Example 2: $\quad\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)^{\top}=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right),\left(\begin{array}{cc}1 & -1 \\ 2 & -2\end{array}\right)^{\top}=\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right)$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
2 & -2
\end{array}\right)=\left(\begin{array}{cc}
4 & -5 \\
11 & -11
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 2 \\
-1 & -2
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)=\left(\begin{array}{cc}
4 & 11 \\
-5 & -11
\end{array}\right)
$$

Definition 3 A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose matrix is orthogonal is called an orthogonal transformation.

It tors ort, finding the inverse of an orthogonal matrix is extremely easy
Theorem 2: An $n \times n$ matrix is orthogonal if $Q^{\top} Q=I_{n}$.

Evidently, this matrix is the rentity if and only if B is orthonormal is

The associated transformation to Q satisfies an important property:
Theorem 3: let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with associated matrix Q, and assume Q is orthogonal. Then, for any $v, w \in \mathbb{R}^{n}, T(v) \cdot T(w)=v \cdot w$ In particular, $\|T(v)\|=\|v\|$.
Prof: Take $v, w \in \mathbb{R}^{n}$. Then $\pi v \cdot T(w)=\left(Q_{v}\right) \cdot\left(Q_{w}\right)=\left(Q_{v}\right)^{\top}\left(Q_{w}\right)=v^{\top} Q^{\top} Q_{w}=v^{\top} w=v \cdot w$. - $\|T(v)\|=\|v\|: \ln$-las exercise... $\quad \pi$

In-class exercises:

1. Find the QR factorization of $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ -1 & 2\end{array}\right)$
2. Let $S=\operatorname{lm}(A)$. Find the matrix of props.
3. Prove:

- If T is an orthogonal tranhPormation, then $\|T(v)\|=\|v\|$ for all $v \in \mathbb{R}^{n}$. (Hat wee $T_{h m} 3$).
- If A is an man matrix and B is an $n \times p$ matrix, then $(A B)^{\top}=B^{\top} A^{\top}$.

