
Lecturer

Solutions to in-class exercises :

1. Determine if the following matrices are diagonal *able .

a) f-¥::¥ :/◦
" "

char poly = (1-1712-1113-1) 14 -HIS -1116 -H
.

6 different eigenvalues fora 6×6 matrix
⇒ Diagonal☒able .

b) (8-35) char poly = (3-+51-2-1) ⇒ as --2
0 03

g. = dim / Es) = dim /Kerf! §) ) = 3- rank ( ◦ ◦ 10 -so) = 1 < 2O O O

⇒ Not diagonalized .

2. a) Find a 5×5 matrix with eigenvalues -1 and 0
,

a- , =3 , ao = 2 , g., = 1, 90=2 .

I"t 1 ) : char poly = (-1-+131-1)
'

⇒ a- , =3 ✓

- I
◦
o ao = 2 ✓

g. = dim / Ker /
◦

%
,
,
) ) = 5- rank / ◦% )=s-4=1 .

✓

1
1

✓

go = dim ( Ker [ ' ii. ◦
,
)) = 5 - rank = 5-3=2

b) Find a 7×7 matrix with eigenvalues -1 and 0
,

a- , =3 , ao = 2 , g., = 1, go -_ 2 .

- I 1 char poly : (-1-+131-11242+1)
- I
◦
O
O - 1) ( The rest is similar to a) )

.

I 0

3. Write
i

in the form atbi . ¥.

= (2+3
12-31×2+3 ;)

= = ⇒ + i.



Recap :
• Diagonalizabihty ⇔ Egx = n

• Problems that can arise : • Sax an Example : 1g ) char poly = AHHH-27 .

Say = Az = 1 <3
.

✗ eigs

•

g, < ax Example : (10^-1) char poly -- la -ti

91=1 < 2=92 .

Today :

"We get rid of the first problem
"

.

Discussion : Complex numbers are of the form a +bi , with a. BER, and i a number s.-1 . i? -1 .

They can be added
,
subtracted

, multiplied , and divided
↓ \

Notation : ①
. (atbi) (ctdi) = @c-bd) + iladtbc) a = = £+5 - i -¥,

complex numbers were invented in order to solve polynomial equations .

An example
could be ✗2-1×+1=0 .

The solutions are ✗ = -1+-21-5-4=-1+-2-5-3
Now the introduction of i=F1 allows us to write F3= F1 - B = i.V3

.

So our complex solutions are -1+5-53 and -1-01
2

'

When finding eigenvalues of a matrix , sometimes we get factors such as Hit 9) or

(42+4+1)
,
which cannot be factored further using real numbers . However

, using complex numbers ,

both of these factor : 5+9=4+3i)H-3i) and Yett 1=(4-1%-11×-1211) .

One may wonder if using complex numbers
,

one could factor any polynomial into linear factors .

Theorem 1 (
"

Fundamental
"

theorem of algebra) . let plxl be a polynomial with coefficients in 6 of degree n .

Then, plx) = (x - 2-1) (x - za) : . . . (x - zn) for some complex numbers Zi
, possibly repeated.

Proof: omitted .

Corollary : let A be an nxn matrix
. If we allow complex eigenvalues, Eat =n .

teig.



Example 1 : A- = ( ;) ⇒ char poly (A) = hit = Ati)a-it ⇒ /
" = ᵗ

la
. ; = 1

4 these add up to
n = 2

Since it has 2 different eigenvalues , A is diagonal☒able
"

over ¢
"

.

Now E- = Ker /¥ ) =
=
- i

t: I :) ÷ I :&. / g)
"

1 ; I ;) ⇒ E- spank :D .

E. i= Kerl: :-|
"
i

f. I. I ;) (¥ I ;) ( I :| :) ⇒ E.i. spank:D
So set 5- ( I -:) .

Then 5:(- ÷ :) ⇒ ( : :/ =/ i. ¥11 : :/ 1-÷ :|÷ :

Definition 1- (
"

over É) : A matrix is diqgonalizable over E if it can be diagonalized using complex

numbers . ( see Example 1)

Remark : We will say
"

over IR
"

or
"

over E
"

when we need to specify which numbers

we are using . By default, you should assume everything is over 1C
.

Discussion : The use of complex allows us to "almost diagonalize" every matrix, the only

problem being when the geometric and algebraic multiplicities do not coincide .

Example 2 : The matrix (1-1) is still not diagonal*able, not even over E.
0 1-

After diagonal form, the best next thing is the Jordan normal form .

Definition 2 : A Jordan matrix is a matrix of the form
where he ≤ Xz ≤

. . .

≤ in
.

.

.

(blank entries are zeroes)



Theorem 2 : Any nxn matrix (with real or complex entries) is similar over ¢ to a Jordan matrix .

Remark : In other words
, for any nxn matrix A

,
there exists an invertible matrix S such that A-- s

-'

JS
,

and J is a Jordan matrix
.

Proof : omitted
.

Definition 3 : The matrix J in Theorem 2 is called the Jordan normal form of A .

Theorem 3 : Two matrices are similar if and only if they have the same Jordan normal form .

Proof : omitted
.

Example 3 : f) and (¥ are not similar by Theorem 3
.

Remark : we won't learn how to find /compute the Jordan normal form of a matrix , although it's not very far from
the "algorithm" to diagonalize a matrix .

Discussion : we have seen linear algebra "

over R
"

and "

over E
"

,
and I'm telling you that everything

"

works

out the same
"

in the complex case . To be more rigorous, one would have to repeat the whole course

replacing R by 1C
.

Better yet, one could create an abstract notion of which R and E are

special cases , that way we only have to do the work once .

Moreover
, This could be applied

to "numbers" that aren't real or complex .

Note : the restof today's lecture is not examinable
.

Definition 4 :



Example 4 : Q
,
R
,
E

.

Example 5 : Consider the set F--4919, with addition table _g and mdtiplication table

•µ-
This field is denoted Fa ,

"

the field of two elements
"

.

Definition 5 : A vector space over a field F is a set V with a binary operation + called sum

as well as a scalar mdtiplication sending Ct, v1 ↳ bv c- V for each JEF , satisfying :

Fact: the notions we have seen in this course can all be carried out in this abstract setting .

Applicationsout

Lights out is a game where squares on a grid are on/off and the goal is to turn all of them off .

The catch is that clicking on a square also changes the adjacent squares :

=
click

→

We can win this game using linear algebra!
¥
.

Consider (E)
"
= / ×, : ✗ i;

c- Ez 4
,

canonical basis en , . .
-

, es} .

✗21it¥.
¥,



Then lights configurations IF:

Clicking the top left square adding the vector entente . . For instance :

Idiot,

eiztezztezz → en t Zeiztez, + e3zte33

This holds similarly for the other squares . Define vii. Viz , Vis, Vai , . . . > V3} similarly .

1

0

kt YE #)
"

describe °" "J°ʳᵈ"°" " ⇒ Y = " +""↳ + e" = $ )110
1
0

The question
" which squares should I click ?

"

→

what scalars X
" , . . . ,

t}} C- Fz should I choose so that turnt . . _ tlssv}}=y ?

This is a system of linear equations ! Namely , A- flu - - -v4 , ✗ = ,⇒Ax=y .

I 1

To solve this
,
tale A-

'

y .

I 1 0 I O O O O O " ° " ° ° " " " °

)
I 1 I 0 I O O O O O O O O I 0 I 1 I

0 I 0 0 I 0 0 0 I 0 1 1 00 O I I

A- ( ' "

◦ ◦ ' ' ° ' ◦ ° ⇒ A "=( ◦ ◦ ' ° ' ' ° ° '

0 I 0 I 1 I 0 I 0 0 I 0 I 1 1 01 O

O O I O I I 0 0 I 1 O U 1 I 0 I 0 0

, , , , , , , , , ) , , , , , , , , ,

0 U O O I O I I 1 I 1 1 01 O O O O

O O O O O I 0 1 1 01 1 1 00 I 0 1

(
" ° " ° ° " " " ° ± ±

O O O O I 0 I 1 I 0 0

I 0 1 1 00 O I I

A-"I
= ◦ ° ' ° ' ' ° ° ' ° $ "" te" -

◦ , ◦ , , , o , ;) ) =/ °, ◦ , , , , , ◦ ◦ ( °; ;1

1 I O O O I I 0

I 1 1 01 O O O O
°

0 I 1 1 00 I 0 I

ᵗ



And indeed :

✗

→ × → done !

In-class exercise : diagonalize the matrix 4
1

11 over E.

1-


