Lecture 14
Solutions to in-class exercises:
1. Determine of the following matrices are dragonalizable. a) $\begin{pmatrix} 1,7 & 8,9 & 10 & 11 \\ 2 & 2 & 10 & 11 \\ 3 & 4 & 11 & 12 \\ 0 & 5 & 6' \end{pmatrix}$
char poly = $(1-\lambda)(2-\lambda)(3-\lambda)(4-\lambda)(5-\lambda)(6-\lambda)$ 6 different eigenvalues for a 6×6 matrix
⇒ Diagonalizable
b) $\begin{pmatrix} 3 & 0 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ char poly = $(3 - \lambda)^2 (-2 - \lambda) \implies 0_3 = 2$
$ \begin{cases} 0 \ 0 \ 3 \end{cases} = \dim \left(\operatorname{ter} \begin{pmatrix} 0 \ 0 \ 1 \\ 0 \ 5 \ 0 \end{pmatrix} \right) = 3 \operatorname{rank} \begin{pmatrix} 0 \ 0 \ 1 \\ 0 \ 5 \ 0 \end{pmatrix} = 1 < 2 $ $ \Rightarrow \operatorname{Not} \operatorname{diagonalizable} $
2.0) Find a 5×5 matrix with eigenvalues -1 and O, $a_{-1} = 3$, $a_0 = 2$, $g_{+} = 1$, $g_0 = 2$.
$\begin{pmatrix} -1 & 1 \\ -1 & 1 \\ & -1 \\ & & 0 \end{pmatrix} : \operatorname{char} \operatorname{poly} = (-1 - \lambda)^3 (-\lambda)^2 \implies a_{-1} = 3$
$g_{-1} = \operatorname{dim}\left(\operatorname{Ker}\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}\right)\right) = 5 - \operatorname{rank}\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}\right) = 5 - 4 = 1$
$g_{0} = \dim \left(\ker \left(\begin{bmatrix} -1 & 1 & 1 \\ -1 & -1 & 0 \\ 0 & 0 \end{bmatrix} \right) = 5 - \operatorname{rank} = 5 - 3 = 2$
b) Find a 7×7 matrix with eigenvalues -1 and 0, $a_{-1}=3$, $a_{0}=2$, $g_{-1}=1$, $g_{0}=2$.
$\begin{pmatrix} -1 \ 1 \\ -1 \ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \ -\lambda \end{pmatrix}^{2} (-\lambda)^{2} (\lambda^{2} + 1)$
$\begin{pmatrix} -1 & 1 \\ -1 & 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ (<i>The rest is similar to o</i>)). (<i>The rest is similar to o</i>)).
3 Write $\frac{1}{2-3i}$ in the form arbit. $\frac{1}{2-3i} = \frac{(2+3i)}{(2-3i)(2+3i)} = \frac{2+3i}{4+9} = \frac{2}{13} + \frac{3}{13}i$

Recap .	Diagonalizability (=>	Zgx = n	· · · · ·	· · · · ·	· · · · · · · · · · ·
· · · · · ·	Problems that can a	$n = 2a_\lambda < n$	Example:	$\begin{pmatrix} \mathbf{O} & & \mathbf{O} & \mathbf{O} \\ -\mathbf{I} & \mathbf{O} & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} & \mathbf{I} & \mathbf{O} \end{pmatrix}$	char poly = $(\lambda^2+1)(\lambda^2-2)$
· · · · · ·	· · · · · · · ·	· · · · · · ·	· · · ·		$Za_{1} = a_{2} = 1 < 3$
		• $g_{\lambda} < a_{\lambda}$	Example	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	char poly = $(1-\lambda)^2$
					$g_1 = 1 < 2 = g_2$.
Today "	We get rid of the fir	rt protem".			
	Complex numbers are a	· · · · · · ·	, with a, b	ϵ R, and i. a	number st. i ² =-1.
	They can be added, s				
	ution: C.				$\frac{a-bi}{a^2+b^4} = \frac{a}{a^2+b^4} - i \cdot \frac{b}{a^2+b^4}$
	plex numbers were inv				
cold	$k^{2}+x+1=0$). The solutions	are x=	$1 \pm 1 - 4 = 2$	$-\underline{1\pm\sqrt{-3}}$
	, the introduction of			-	
	our complex solution			-	
	finding eigenvalues				s $(\lambda^{e}+9)$ or
	$\lambda+1$), which cannot be				
	these factor: $\lambda^2 + 9 =$				
	nay wonder if using a				
	(Fundamental theorem of al				
	b(x) = (x-s ⁺) (x-s ⁺)				
Proof: omitted					
Corollary	let A be an nxn matrix.	If we allow comp	kx eigenvalues,	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	

Example 1:
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \rightarrow dow publy $(A) = \lambda^{2} + 1 = (\lambda + 1)(\lambda + 1) \Rightarrow \begin{pmatrix} a_{1} = 1 \\ a_{-1} = 1 \end{pmatrix}$ there add up to
Since it has 2 different eigenvalues, A is diagonalizable "over C.
Now $E_{1} = ker \begin{pmatrix} -1 & -1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \end{pmatrix} \stackrel{T = \frac{1}{2}}{\rightarrow} \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 1 & -1 & 0 \end{pmatrix} \stackrel{T = \frac{1}{2}}{\rightarrow} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 1 & -1 & 0 \end{pmatrix} \stackrel{T = \frac{1}{2}}{\rightarrow} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 1 & -1 & 0 \end{pmatrix} \stackrel{T = \frac{1}{2}}{\rightarrow} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 1 & -1 & 0 \end{pmatrix} \stackrel{T = \frac{1}{2}}{\rightarrow} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow E_{1} \cdot \text{Spon} (\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix})$
 $E_{1} = ker \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \stackrel{T = \frac{1}{2}}{\rightarrow} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{T = \frac{1}{2}}{\rightarrow} = \sum_{i=1}^{n} \sum_{i=1}^{n}$$$

Theorem 2	Any nxn matrix (with real or complex entries) is similar over C to a Jordan matrix.	
Remark: In	other words, for any nxn motrix A, there exists an invertible matrix S such that $A=S^{-1}JS$,	
	rd J is a Jordan matrix.	
Proof omittee		
Definition 3	The motrix J in Theorem 2 is called the Jordan normal form of A	
	Two matrices are similar if and only if they have the same Jordan normal form.	
Proof omitted		
Example 3:	$ \begin{pmatrix} 2 & 1 \\ 2 & 1 \\ 2 & 0 \\ 2 & 2 \end{pmatrix} \text{and} \begin{pmatrix} 2 & 1 \\ 2 & 0 \\ 2 & 1 \\ 2 & 2 \end{pmatrix} \text{are not similar by Theorem 3} $	
Remark: we u	won't learn how to find /compute the Jordan normal form of a matrix, although it's not very far from	
	albonthum" to diagonalize a matrix.	
Discussion: v	ve have seen linear algebra "over R" and "over C", and I'm telling you that evenything "works	
	ve have seen linear algebra "over R" and "over C", and I'm telling you that evenything "works st the same" in the complex case. To be more rigorous, one would have to repeat the whole course	
	ue have seen linear algebra "over R" and "over C", and I'm telling you that evenything "works at the same" in the complex case. To be more rigoroos, one would have to reprat the whole course eplacing R by C. Better yet, one could create an abstract notion of which IR and C are	
	st the same" in the complex case. To be more rigorous, one would have to repeat the whole course	
۵. ۲	st the same" in the complex case. To be more rigorous, one would have to repeat the whole course eplacing R by C. Better yet, one could create an obstract notion of which R and C are	
۵ ۵ ۱۰	of the same" in the complex case. To be more rigorous, one would have to repeat the whole course eplacing R by C. Better yet, one could create an obstract notion of which R and C are special cases, that way we only have to do the work once. Moreover, this could be applied	
۵ ۵ ۱۰	of the same" in the complex case. To be more rigoroos, one would have to reprat the whole coorse eplacing R by C. Better yet, one could create an abstract notion of which R and C are special cases, that way we only have to do the work once. Moreover, this could be applied to "numbers" that aren't real or complex.	
Note: the rest	at the same in the complex case. To be more rigorous, one would have to reprat the whole course eplacing R by C. Better yet, one could create an abstract notion of which R and C are special cases, that may me only have to do the work once. Horeover, this could be applied to "numbers" that aren't real or complex. of today's lecture is not oraminable.	
Note: the rest	at the same " in the complex case. To be more rigoroos, one would have to repeat the whole coorse epilocing. R by C. Better yet, one could create an abstract notion of which IR and C are special cases, that way we only have to do the work once. Horeover, this could be applied to "numbers" that aren't real or complex. of today's lectore is not oxaminable. Classic definition (ca) Pornetly, that is a correspondence that associates with each ordered pair of elements of P anipular distance of today's lectore is not oxaminable. Classic definition (ca) Pornetly, affection e correspondence that associates with each ordered pair of elements of P anipular distance of today's lectore is not oxaminable. Classic definition (ca) Pornetly affection to a sub the called the called the same of are do, and is decoded at a hose special or a status of the same of the called the called the same of are do, and is decoded at a hose operations are required to satisfy the following properties, referred to as final associates are the automation of a status of the satisfy of addition and multiplication: a + b + a and are b - b = a - Addition and multiplication: a + b + b + and are a final and the satisfy the event of a set of the satisfy the event of the anipular the satisfy of addition and multiplication: a + b + b + and are a final a final anipular to the satisfy the event of the satisfy the	
Note: the rest	It the some" in the complex case. To be more rigoroos, one woold have to repeat the whole coorse epolocing R by C. Better yets one could create an obstract notion of which R and C are special cases, that may me only have to do the work once. However, this could be applied to "numbers" that aren't real or complex. Classic definition [eff] Permity and the are properties in not ocaminable. Classic definition [eff] Permity and the are properties one called define and and the main defined of $a = b$. The special test of the definition is and a called and the proved of $a = b$. Standardy is defined and the properties one of the anomaly defined . Classic definition [eff] Permity and the are properties the the proved of and the states the account of $F = anomaly defined the main of the main of the main defined of a = b.Similar, the event of the main term the based operations on the anomaly defined the main of and the states the product of and the states defined are a trans-extractive defined to the individual of the final of the states of a states the account of the states of the sta$	
Note: the rest	st the some" in the complex case. To be more rigoroos, one woold have to repeat the whole coorse epolocing R by C. Better yets one could create an obstract notion of which R and C are special cases, that way we only have to do the work once. Honeoner, this could be applied to "numbers" that aren't real or complex. of today's lectore is not complex. Classic definition (as) Formally effective with two thinky operations on P cased addition and multiplication. ¹¹ Abinary operation on Psecial of PSP the outs a correspondence that associates with each order of pair of elements of P a uniquely determined density the event of the addition of the cased the product of a and a of the case the control of a case of a difference in a not or difference in the control of a and a field the control of a difference in the cased the control of a and a difference in the case of the case of the case of the cased the control of a difference in the case of the c	

		Q, R, C	•		•		•	• •		
Example	 5 :	Consider the set $F = 10, 19$, with addition table	+	01	and	multiplication	table	•	0	1
	• •		0	0 1	•	•••	•	0	0	0
• • •	• •		1	10	•		•	1	ð	1
· · ·	•••	This field is denoted IF2, "the field of two	s el	ements .	•	· · · · ·	•	• •		• •
Definition	5	A vector space over a field F is a set	ý	with a	binan	y operation	+	call	ed j	Som
• • •		as well as a scalar multiplication sending (2),	v) i		e∛	lor each	ι EF,	satis	lyir	 Ng:

Axiom	Meaning		
Associativity of vector addition	$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$		
Commutativity of vector addition	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$		
Identity element of vector addition	There exists an element $0 \in V$, called the <i>zero vector</i> , such that $\mathbf{v} + 0 = \mathbf{v}$ for all $\mathbf{v} \in V$.		
Inverse elements of vector addition	For every $\mathbf{v} \in V$, there exists an element $-\mathbf{v} \in V$, called the <i>additive inverse</i> of \mathbf{v} , such that $\mathbf{v} + (-\mathbf{v}) = 0$.		
Compatibility of scalar multiplication with field multiplication	$a(b\mathbf{v}) = (ab)\mathbf{v} \ ^{[nb \ 3]}$		
Identity element of scalar multiplication	$1\mathbf{v} = \mathbf{v}$, where 1 denotes the multiplicative identity in <i>F</i> .		
Distributivity of scalar multiplication with respect to vector addition	$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$		
Distributivity of scalar multiplication with respect to field addition	$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$		

Fact: the notions we have seen in this course can all be carried out in this abstract setting. <u>Application: lights</u> out Lights out is a game where squares on a grid are on/off and the goal is to turn all of them off. The cotch is that clicking on a square also changes the adjacent squares: chickWe can win this gave using linear algebra! Consider $(F_2)^9 = \frac{1}{2} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in F_2$, canonical basis C_{11}, \dots, C_{33} .

Then lights configurations \leftarrow \mathbb{H}_2^+ Clicking the top left square adding the vector enterester. For instance: e12 + e32 + e33 $e_{11} + 2e_{12} + e_{21} + e_{32} + e_{33}$ This holds similarly for the other squares Define V11, V12, V13, V21, ..., V33 Similarly. let $y \in (\mathbb{F}_{2})^{9}$ describe our configuration The question "which squares should I click?" what scalars $\lambda_1, \ldots, \lambda_{33} \in \mathbb{F}_2$ should I choose so that $\lambda_{11}v_{11} + \ldots + \lambda_{33}v_{33} = y$? This is a system of linear equations! Namely, $A = \begin{pmatrix} v_1 & \cdots & v_{33} \end{pmatrix}$, $x = \begin{pmatrix} \lambda_{11} \\ \vdots \\ \lambda_{33} \end{pmatrix}$, $x = \begin{pmatrix} \lambda_{11} \\ \vdots \\ \lambda_{33} \end{pmatrix}$ To solve this, take Aty. 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 | 0 0 0 0 0 0 0 0 1 0 Q AY ō υ 0 1 0 0 0 1 1

· ·		And indeed	· · · · · · · · ·	
· ·			dore I	· · · · · · · · · · · · ·
· ·	In-class exercise:	diagonalize the matrix	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{over } \mathbb{C}$	· · · · · · · · · · · · · · · · · · ·
· ·				
· ·	· · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · ·
· ·	 	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·
· ·	· · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · ·	
				· · · · · · · · · · · · · ·
				· · · · · · · · · · · ·
				· · · · · · · · · · · · · ·
· ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·
				· · · · · · · · · · · · ·