Lecture 12
In-class exercises' solutions:

1. Let $A=\left(\begin{array}{cc}-\frac{11}{2} & \frac{3}{2} \\ -18 & 5\end{array}\right)$ You're given that $A \cdot\binom{1}{3}=-\binom{1}{3}$ and $A\binom{-1}{-4}=\frac{1}{2}\binom{-1}{-4}$.

Compare A^{100}, rounding to 3 decimal places.
We change A to the basis $B: v_{1}=\binom{1}{3}$ and $v_{2}=\binom{-1}{-4}$ So set $S=\left(\begin{array}{ll}1 & -1 \\ 3 & -4\end{array}\right)$. Then $S^{-1}=\left(\begin{array}{ll}4 & -1 \\ 3 & -1\end{array}\right)$ and by last lecture, $\quad A=\left(\begin{array}{ll}1 & -1 \\ 3 & -y\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & \frac{1}{2}\end{array}\right)\left(\begin{array}{ll}4 & -1 \\ 3 & -1\end{array}\right)$. Now $A^{100}=\left(\begin{array}{cc}1 & -1 \\ 3 & -4\end{array}\right)\left(\begin{array}{cc}--1 \\ 0\end{array} 0^{100}\binom{1}{2}^{100}\right)\left(\begin{array}{ll}4 & -1 \\ 3 & -1\end{array}\right)$

$$
\left.\begin{array}{l}
=\left(\begin{array}{ll}
1 & -1 \\
\overline{7} & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{c}
4 \\
3 \\
3
\end{array}-1\right.
\end{array}\right) .
$$

2. If. $A \sim B$, then there exists S_{0} invertible sit. $A=S_{0}^{-1} B S_{0}$

$$
B \sim C \because S_{1} \quad B=S_{1}^{-1} C S_{1} \quad \mathbb{R}^{n} \underset{S_{0}^{-1}}{S_{0}} \mathbb{R}^{n} \xrightarrow[S_{1}^{-1}]{S_{1}} \mathbb{R}^{n}
$$

So $A=S_{0}^{-1} S_{1}^{-1} C S_{1} S_{0}$. Now observe that $\left(S_{1} S_{0}\right)^{-1}=S_{0}^{-1} S_{1}^{-1}$. $S_{0} \quad A \sim C$.

Crucial Recap

- Given a basis B of \mathbb{R}^{n} nth vectors v_{2}, \ldots, v_{n}, the B-coordinates of $v \in \mathbb{R}^{n}$ are $[v]_{\beta}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$, where $v=c_{1} v_{1}+\ldots+c_{n} v_{n}$
- The canonical basis is $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ \vdots \\ 0\end{array}\right), \ldots, e_{n}=\left(\begin{array}{l}0 \\ \vdots \\ 1 \\ 1\end{array}\right)$, and we denote it e
- There exist change of basis matrices $S_{B \rightarrow C}=\left(\begin{array}{ll}1 & 1 \\ v_{1} & \cdots \\ 1 & v_{n} \\ 1\end{array}\right), S_{C \rightarrow B}=S_{B \rightarrow e^{-1}}$.

$$
\text { st. }[v]_{C}=S_{B \rightarrow C}[v]_{D} \text { and }[v]_{B}=S_{C \rightarrow B}[v]_{C}
$$

- Given a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with matrix A, and a basis B as above, the matrix of T with respect to B is $S_{B \rightarrow C}^{-1} A S_{B \rightarrow C}$ (Then $[T V]_{B}=S^{-1} A S[v]_{B}$) $S=S_{S \rightarrow C}$
- If there exists an invertible matrix S st. $A=S^{-} B S$, then $A \sim B$.
- If $A \sim D$, where D is diagonal, then A is diagonalizable.

Definition 1: To diagonalize an $n \times n$ matrix is to find an invertibk matrix S s. $S^{-1} A S$ is diagonal Discussion: In-class exercise revisited.

Recall that the exercise gave us two vectors $v_{1}=\binom{1}{3}$ and $v_{2}=\binom{-1}{-4}$. These had the property that $A v_{1}=-v_{1}$ and $A v_{2}=\frac{1}{2} v_{2}$. This allourd is to compute A^{100} by hand! Problem: in real life we're rarely handed such vectors. We have to find them
Definition 2: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with matrix A. Then a nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with eigenvalue $\lambda \in \mathbb{R}$ ill $A v=\lambda v$. Note: "eigen" means "own" in German.
Example 1: $\binom{1}{3}$ and $\binom{-1}{-4}$ are eigenvectors of $A=\left(\begin{array}{cc}-\frac{11}{2} & \frac{3}{2} \\ -18 & 5\end{array}\right)$, with eigenvalues -1 and $\frac{1}{2}$ respectively.
Discussion: how to find these in the first place? Brilliant idea: of $A v=\lambda v$ then $\left(A-\lambda I_{n}\right) v=0$. This is saying $A-\lambda I_{n}$ has a nonzero vector in is kernel! Therefore, $A-\lambda I_{n}$ is not invertible, so $\operatorname{det}\left(A-\lambda I_{n}\right)=0$!

So of we want to find λ, a good starting point is solving the equation (in λ):

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

Defintion 3: let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with matrix A. Then the characteristic polynomial of T (or of A) is $\operatorname{det}\left(A-\lambda I_{n}\right)$ (This is a polynomial in λ)
Example 1 (ctr'): Suppose we don't know the eigenvalues -1 and $\frac{1}{2}$ of A.
The equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ says: $\operatorname{det}\left(\left(\begin{array}{cc}-\frac{11}{2} & \frac{3}{2} \\ -18 & 5\end{array}\right)-\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)\right)=0$

$$
\begin{gathered}
\operatorname{det}\left(\left(\begin{array}{cc}
-\frac{11}{2}-\lambda & \frac{3}{2} \\
-18 & 5-\lambda
\end{array}\right)\right)=0 \\
\Leftrightarrow \\
\left(-\frac{11}{2}-\lambda\right) \cdot(5-\lambda)+\frac{3}{2} \cdot 18=0 \\
\Leftrightarrow \\
\lambda^{2}-5 \lambda+\frac{11}{2} \lambda-\frac{55}{2}+27=0 \\
\\
\lambda^{2}+\frac{1}{2} \lambda-\frac{1}{2}=0 \quad \leadsto \lambda=\frac{-\frac{1}{2} \pm \sqrt{\frac{1}{4}-4} \cdot\left(\frac{1}{2}\right)}{2}=\lambda_{\lambda=1}^{\lambda=\frac{1}{2}} \\
\lambda=-1
\end{gathered}
$$

Great! We found the eigenvalue. What about the eigenvectors $\binom{1}{3}$ and $\binom{-1}{-4}$?
These ave linear systems!

- $\lambda=\frac{1}{2}: A v=\frac{1}{2} v \Longleftrightarrow v \in \operatorname{Ker}\left(A-\frac{1}{2} I_{n}\right)$. We know how to compute hex!

$$
\begin{aligned}
& A-\frac{1}{2} I_{n}=\left(\begin{array}{cc}
-\frac{11}{2}-\frac{1}{2} & \frac{3}{2} \\
-18 & 5-\frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
-6 & \frac{3}{2} \\
-18 & \frac{9}{2}
\end{array}\right)
\end{aligned}
$$

$\Rightarrow\binom{\frac{1}{4}}{1}$ is an eigenvector of A with eigenvalue $\frac{1}{2} \quad$ Basis: $\binom{\frac{1}{4}}{1}$
Notice: we can scale the basis to eg. $-4 \cdot\binom{\frac{1}{4}}{1}=\binom{-1}{-4}$.

- $\lambda=-1$: but we don't need to.

$$
\begin{aligned}
& A-\lambda I_{n}=\left(\begin{array}{cc}
-\frac{11}{2}+1 & \frac{3}{2} \\
-18 & 5+1
\end{array}\right)=\left(\begin{array}{cc}
-\frac{9}{2} & \frac{3}{2} \\
-18 & 6
\end{array}\right) \\
& \operatorname{Ker}\left(A-\lambda I_{n}\right): \quad\left(\begin{array}{cc}
-\frac{9}{2} & \frac{3}{2} \\
-18 & 6
\end{array}\right) \xrightarrow[\mathbb{I} \rightarrow \frac{1}{-18} \mathbb{I} I]{I \rightarrow}\left(\begin{array}{cc}
1 & -\frac{1}{3} \\
1 & -\frac{1}{3}
\end{array}\right) \xrightarrow{\mathbb{I} \rightarrow \pi-I}\left(\begin{array}{cc}
1 & -\frac{1}{3} \\
0 & 0
\end{array}\right) \\
& \operatorname{Ker}\left(A-\lambda I_{n}\right)=\left\{\binom{\frac{1}{3} t}{t}: t \in \mathbb{R}\right\}=\operatorname{Span}\left(\binom{\frac{1}{3}}{1}\right) \sim \text { Basis: }\binom{\frac{1}{3}}{1} .
\end{aligned}
$$

$\Rightarrow\binom{\frac{1}{3}}{1}$ is an eigenvector for A with eigenvalue -1 .

Upshot: "Algorithm" to diagonalize a matrix:

1. Solve the polynomial equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0 \leadsto$ Get eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$.
2. Find nonzero vectors in $\operatorname{Ker}\left(A-\lambda_{1} I_{n}\right)_{1}, \ldots, \operatorname{Ker}\left(A-\lambda_{k} I_{n}\right)$ forming a basis $B=v_{1}, \ldots, v_{n}$. (1 Warning Step 2 may fail!)
3. Let $S=S_{B \rightarrow C}=\left(\begin{array}{cc}1 & 1 \\ v_{1} & \cdots \\ 1 & \\ 1 & 1\end{array}\right)$. Then $D=S^{-1} A S$ is diagonal with entries $\lambda_{1}, \ldots, \lambda_{k}$ (some eigenvalues may be repeated).

Exploring where our "Algorithm" can fail
Definition 3: Let $\lambda \in \mathbb{R}, T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a linear transformation with matrix A. Then the λ-eigenspace of T is $E_{\lambda}=\operatorname{Ker}\left(A-\lambda I_{n}\right) \quad E_{q \text { quiralently }}, E_{\lambda}$ is the subspace of all the vectors $v \in \mathbb{R}^{n}$ such that $A_{v}=\lambda_{v}$.
Example 2: Consider the matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. This repeesnts a 90° rotation Intuitively, this has no eigenvectors. Let's perform the "algorithm".

1. Char poly: $\operatorname{det}\left(\begin{array}{cc}-\lambda & -1 \\ 1 & -\lambda\end{array}\right)=\lambda^{2}+1$. This has no real roots. Thus A has no eigenvalues \Rightarrow There are no eigenvectors. $\Rightarrow\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is not diagonatirable.
Example 3 Consider the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. This represents a shear:
Intuitively, the only eigenvectors lie on the x-axis Let's perform the "algorithm".
2. Char poly: $\operatorname{det}\left(\begin{array}{cc}1-\lambda & 1 \\ 0 & 1-\lambda\end{array}\right)=(1-\lambda)^{2}$. The only root is $\lambda=1$.
3. Let us find bases for the E_{λ}^{\prime} 's Or only E_{λ} is $E_{1}=\operatorname{ker}\left(A-1 \cdot I_{n}\right)=\operatorname{Ker}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$

$$
\begin{aligned}
& \text { Now } \operatorname{Ker}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left\{\binom{x}{y} \in \mathbb{R}^{2}:\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{y}{y}=\binom{0}{0}\right\} \\
& =\left\{\binom{x}{y} \in \mathbb{R}^{2} \quad\binom{y}{0}=\binom{0}{0}\right\} \\
& =\left\{\binom{x}{y} \in \mathbb{R}^{2}: \quad y=0\right\} \\
& =\operatorname{Span}\left(\binom{1}{0}\right) \text {. }
\end{aligned}
$$

Unfortunately, this is a 1 -dimensional subspace of \mathbb{R}^{2}, hence any basis for it will only have 1 vector. Since E_{1} is the only eigenpace, this mans we will not be able to find an eigenbasis $\Rightarrow\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable.

Remark: Examples 2 and 3 are the two Kinds of things that can go wrong.
Example 4: $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ 1) Char poly $\operatorname{det}\left(\begin{array}{ccc}1-\lambda & 0 & 1 \\ 0 & 2-\lambda & 0 \\ 0 & 0 & 1-\lambda\end{array}\right)=(1-\lambda)^{2}(2-\lambda) \Rightarrow$ Eigenvalues: $\lambda=1, \lambda=2$.
2)

$$
\begin{aligned}
E_{1}=\operatorname{Ker}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=\operatorname{Span}\left(\binom{1}{0}\right) \rightarrow \operatorname{dim} & =1 \\
E_{2}=\operatorname{Ker}\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)=\operatorname{Span}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right) \rightarrow \operatorname{dim} & \left.=1, \begin{array}{c}
\text { Cannot get an } \\
\text { eigen }
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \text { is not diagonaliable }
\end{aligned}
$$

The following theorem should not be surprising at this point
Theorem 1: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with matrix A. Then the folloung statements are equivalent:

1) A is diagonaliable
2) There exists a basis of \mathbb{R}^{n} consisting of eigenvectors for A :
3) The dimensions of the eigenspaces add up to n.

You may worry that the bases for E_{λ} and $E_{\lambda^{\prime}}$ are linearly dependent
The following theorem says this cannot happen.
Theorem 1: If A is an $n \times n$ matrix, $v, w \in \mathbb{R}^{n}$ and $c_{1}, c_{2} \in \mathbb{R}$ with $c_{1} \neq c_{2}$ satisfy. $A v=c_{1} v$ and $A w=c_{2} w$ then v and w are linearly independent.

Prof: Suppose $\lambda v+\mu w=0$ (*) Then $A(\lambda v+\mu w)=A 0 \Rightarrow \lambda c_{1} v+\mu c_{2} w=0$
Multiplying (*) by c_{1}, we get $c_{1} \lambda v+c_{1} \mu w=0$

Subtracting the ie get $\mu\left(c_{1}-c_{2}\right) w=0$

Since $c_{1}-c_{2} \neq 0, \mu w=0 \Rightarrow \mu=0$. Similarly, $\lambda=0$. Thus v and w are l_{i}. Δ.

In-class exercises:

1. Determine whetter the following matrices are diagonaliable and diagonalize them if possible:
1) $\left(\begin{array}{cccc}0 & -2 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 3 & 0\end{array}\right)$
2) $\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right)$
3) $\left(\begin{array}{ccc}0 & 1 / 2 & -1 / 2 \\ -4 & 3 & -4 \\ -3 & 3 / 2 & -5 / 2\end{array}\right)$
